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Summary
Statistical procedures based on continuous random variables are
inappropriate if the considered random variables can be obé!rved
in a restricted manner only. Then we are forced to use so-called
grouped or classified sampling schemes. On the one hand the
consideration of grouped sampling schemes requires certain modi-—
fications of the correspending traditional statistical proce-
dures. On the other side we have to take into account that each
kind of grouping effects an information loss and, as a rule, the
statistical properties of grouped cobservation procedures change
to the worse in comparison with the corrcspond{ng non—-grouped
methods. Then, for instance, answers are needed to the following
questions. Which number of groups is necessary and how we have
to allocate these groups such that we obtain still enough
distribution relevant information solving our statistical prob-
lem ? The present Paper provides some answers to the questions
above and contains corresponding contributions to parameter
estimation, parameter testing, goodness of fit tests and regres—

sion analysis.

ZLJssaan1nneer1-faass!SLerq;

Statistische Verfahren fiur stetige verteilte Brundgesamtheiten
sind ungeeignet wenn die Beobachtungen nu} in eingeschrinkter
Form vorliegen. In solchen Situationen werden séq!nannt. grup-—
pierte oder klassifizierte Beobachtungsschemata benutzt. Hierfir
missen einerseits Modifikationen der jeweiligen traditionellen
statistischen Verfahren gefunden werden. Andererseits ist zZu
bericksichtigen, dapg jede Gruppierung i.a. einen Informations-
verlust verursacht, d.h. die statistischen Eigenschaften der
gruppierten Verfahren verschlechtern sich gegeniiber den nicht-
gruppierten Verfahren. Von besonderen Interesse sind dabei die
folggnden Fragestellungen. Welche Aﬁzahl von Gruppen ist notwen-
dig und wie ist die Bruppeneinteilung vorzunehmen, um noch . ge-
nigend verteilungsrelevante Information zur Lésung des vorlie-
genden statistischen Problems zu erhalten ?

Die vorliegende Arbeit vermitt;lt Antworten zu diesen Fragen und
enthdlt entsprechende Beitriage zur Schidtzung und zum Priifen von

'Parametern, Zu Anpassungstest und zur Regressionsanalyse.
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Preface

Statistical procedures based on continuous random v.riab[.s aras
inappropriate if the considered random variables can be 6bl¢rv-d
in a restricted manner only. Such restrictions may be given by
inaccurate measurements, by digitalization or quantization of a
continuous observation variable and of course by c-rénin re—
quirements for a simplification of the observation scheme @.Q-
for economical or technological reasons.

iIn such situations we are forced to use so-called grouped oOr
classified sampling schemes. On the one hand the consideration
of grouped sampling schemes requires certain modifications of
the corresponding traditional statistical procedures. On the
other side we have to take into account that each kind of grou=
ping effects an information loss and, as a rule, the statistical
properties of grouped observation procedures change to the worse
in comparison with the corresponding non—-grouped methads. Then,
for instance, answers are needed to the following questions.
Wwhich number of groups is necessary and how we have to allocate
these groups such that we obtain still enough distribution
relevant information solving our statistical problem ?

The present volume is intended as an introduction to sta—-
tistics based on grouped observations. 1t provides some answers
to the questions above and contains corresponding contributions
to parameter estimation, parameter testing, goodness of fit

tests and regression analysis.

Karl-Marx—Stadt, Novosibirsk
February 1989 Z K.-H. Eger E.B. Tsoi
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Estimation of unknown parameters of one-dimensional
distributions with partially grouped data

by

V.I.Denisov, B.Yu.Lemeahko, E.B.Tsoi *

Summa r y. The concepts of grbuf)ed, ungrouped and censored
data are considered. Estimation methods of unknown parameters
of one-dimensional distributions under the conditions of grou-
ped data: method of moments, method of chi-square minimum and
its modifications, maximum likelihood method are discussed. For
& number of distributions the likelihoed equations for deter-
mining maximum likelihood estimate (MLE) with partially grou-
ped data, as well as expressions of approximate MLE with grou-
ped data for the case of equidistant grouping are presented.

1. Introducttion

Let continuous randon variable X be distributed on smet & with
distribution funetion F,(x), where & is an unknown parameter,
in general case-vector determined on the open range & . The
set X is partitioned in M intervals X;, X,,.. X, so that
XN +#B (4], sz; = by the boundary points X, <
X< = X,f_,:xk‘k . < XS o where XS:inf3X, X5 =supk
Let /L be the sample size, /7, = ,'slhe number of observations
occured in the k -th intervel, > e =1n. Denote individual
values occured in the K -th interval by Xk,,sz,,..,Xk,i;

.Definitiomn. A sample is called partially grouped ,
KULLDORF [1], BODIN [2], if the available information is con-
nected with a set of non-intersecting intervals which divide
the random variable range so that each interval belongs to one
of the two types: :

*) Novosibirsky Elektrotechnichesky Institut,
Novosibirsk, 92, prospekt Karla Markse, 20.
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a) the X -th interval belongs to the first type, if the number
4 is known but the individual values Xej, (j=1,2, .., 1) aTe
unknown;

b) the K -th interval belongs to the second type, if'not only
the number /2, , but also all individual values ij, (j= 1,
2,..,1,) are known.

Such partially grouped sample is the initial sample for defer-

d mining the estimate of the unknown distribution parsmeter. The

concept of partially grouped sample combines grouped, ungrouped

= and censored samples. Thus, we have a grouped sample, if all the
intervals belong to the second type, left-censored (or right-

or : censored), if the firat (/1 -th) interval belongs to the first

type and a2ll the rest to the second type, and we have a two-si-
ded censored sample, if only the first end the last interval

u- belorg tothe first type. Further summation and multiplieation over all

"~ | intervals, belonging to the first (or to the second) type, will

be denoted accordingly by (Z”' (or % ) and {']) (or ([27) e

Let us denote integration over all the intervals of the second

th type by (2f . In the estimation of parameters with grouped and
er, partially grouped samples we have to consider asymptotic pro-
perties of estimates such as consisteney and asymptotic efficien-
t cy, R.AO[Z]. In the estimation of distribution parameters with
: grouped and partially grouped samples different methods may be
X used. Let us consider some of them.

2, Methods of estimation

Method of moments. TIn praetice grouped samples are often con-
sidered as ungrouped ones. All the observations occured in an
interval are assigned values, €.8., equal to the midpoint of
- the interval, and then sampling values of distributions moments
e are computed. Let the first S distributions moments exist and
one be explicitly expressed by funetions o(,,(@,,gz,,,,,ég)’ Pt -8
of unknown parameters. The sampling values of moments are com-

puted by formulas
{ a'r, =

=2
n .

n 4/ m enr
E )GPZ/_Z_kZ_:,nk(XK)' (1)

-




Setting equal odp (8,, €2,...,8s) by suitable sampling values
derive a system of S equations

,.(0:,0;,...,65)=Q. , r=1,2,..,S. (2)

» 2 2R AT

Solving the system for &, ..., §5 , derive the estimates of pa-
rameters by the method of moments. Under definite conditions
the method of moments reduces to consistent estimates, the equ-
ations (2) being -simple in most cases. The method is unsuitable
when theoretiz moments of necessary order do not exist. But ge-
nerally speaking, the estimates by the method of moments are
inefficient. Besides, the procedure of assigning for all the
observations similar values represents approximation which cau-
ses systematic errors and needs corrections. Thus, if the in-

tervals are equal in length, the Sheppard's corrections determi-
ned by the relations

g, =0

O = Gs = 72—/22,

Q3 :d3 = -2/’-0—/12,

a, =Cz4 = ‘210_ h® + Loki
5 =0 — Siéh ﬁé,/z‘:

where 0(_- are moments determined with grouping by formula (1),

A 1s the length of the interval, are often used for the mo-
ments. It should be noted that introducing corrections nat al-
ways brings about satisfactory results. On many occasions the
estimate derived by means of moments appears to be further re-
moved from the true value than the estimate without correction.
The resuts are especially unsatisfactory, if one of the follow-
ing situations takes place: the number of groups is few, i.e.,

rough grouping occurs; the range of determining the random va-
riable is partitioned in intervals of unequal length. In spite
of its disadvantages the method of moments as applied to grou-
ped data is under way in practice. First of all it is due to
the simplicity and small size of computations. It is rational
to use the parameter estimates derived by the method of moments




as initial approximetion when searching an estimate by more ef-
ficient methods.

Chi-square method of minimum and its modifications

These methods assume that the sample by which parameters are
grouped is adequately grouped. Under the method of minimum an
estimate is determined as a value of parameter, minimizing the
statistic

(/’Lk 7= (k))
sz (k)

G
where Z = P, (k) is the probability of observation oc-
curence in the k ~th interval. Upon using modified chi-square
statistic the value is minimized

m = e 2
o Yo = 5 (e~ BK)
k=1 nk

where /’Lk is replaced with 1, if nk =0. Related statistics are
Hellinger's distance

m
H.D. = arccos 2V (n./n) R%k),
k=1

Kullback-Leibler divergence

m
K.L.S. =2 BK) tn [R0 /(e /n)]
k=1
~and Haldane's measure of divergence

e / ¢ I+ -
(f'l.+J). Ny ! (% /k)) = J#"/,

D;=
oAl i i

mn
D= 2 iyl P(k) .

Under the regularity conditions all these methods give consis-
tent and asymptotically efficient estimates [3]. But between
these methods there are differences as well, eppearing in view
of effieieney of the second order introduced in [4]. It was shown
that asymptotic estimate veriance is determined by the relation
2 LN@) et
e " n [.09) nz




where 1}«”is Fisher's parameter information amount, and value
/() is determined by method of estimation and non-negative. If
we denote W(6) for maximum likelihood method by ¥ , then for .
the method of minimum X 2 YB) = Ym + 8, where is a non-
negative value, being equal to zero only in special cases for
modified :)C Yo) = ¥m +46; for Hellinger's distance ¥(6)= Ym+
8/Z for Kullback-Teibler divergence Y/(6)= Yrm +'d’ for Hal-
dane's measure of divergence ¥(6)= (/+/) 28+ ¥M. Hence, in view
of efficieney of the mecond order maximum likelihood method is
‘the best one.
Maximum likelihood method. Likelihood function for practically
grouped seample tekes a form of

n
= 6/ ,y) 5 -
Ln,0) = [1(ATGN™ [1[T5 %),

where (k is the probability of obaérvation ocecurence in the
k -th interval f(x)iu probability density function. Maximum
likelikhood estimaté fMLE) of parameter 6 im determined as such
value of O , whieh transforms the function L(1,0) into absolute
maximum. This MLE is usually found as a solution of likelihood
equation derived by differentiation of likelihood function loga-
rithm by 6 and setting the derivative equal to zero
“anaznp(kuzz aznfs(xk,) =
In caae(;} vectorial parameter we derive & system of likelihood
equations. When solving likelihood equations, in particular with
grouped data, one has to dwell upon such questions as existenece
of solution, its uniqueness as well as upoh the fact whether
thiu'sblution transforms the likelihood function into maximum.
Testing the conditions of existence and uniqueness allows to gi-
ve up & useless process of estimate computation, if it does not
exist. During experimental research, e.g., reliability, knowled-
ge of conditions of existence and uniqueness allows fo make a
decision whether to continue or to stop the experiment, if accor-

ding to the data received it is impossible to find an estimate

of parameter distribution. It's curious to make a note of atatis-
tic data structure the methods considered above deal with. Meth-
od of moments calls for transformetion of grouped data into un-

grouped ones, and only then parameters are estimated using if nece-
10
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ssary (or possible) corrections for grouped data. On the contrary,
method of chi-square minimum and related ones use only grouped
data: if only individuel observations are available for the rese-
archer, they are subject to grouping. Unlike other methods, maxi-
mum likelihood method allows to determine IMLE of parameters with
ungrouped, partially grouped and grouped samples. Generally spe-
2king, maximum likelihood method calls for large size of eompu-
tations. In connection with this a large number of papers are de-
voted to deriving various approximations of MLE of distribution
parameters witk grouped data at limited computational expenses.

3. Exact maximum likelihood estimates

When computing maximum likelihood estimates with grouped and par-
tially grouped samples, it's possible to face a situation, when
MLE simply does not exist, and, if existing, it's then not unique.
In real problems it takes place though not often. That's why be-
fore the change-over to parameter estimation with grouped data it
is useful to test whether MLE exists and will be unique. In most
cases the conditions of existence and uniqueness of MIE take a
simple form and are easily tested. Thus, for distribution parame-
ters of exponential, Raley's, Maxwell's, modulus of multidimensi-=
onal normal distribution, scale parameter of Weibull's distribu-
tion, mathimatical expectation of normsl distribution and & num-

~ ber of others these conditions are defined by the following The-

orem,
Theorem 1. MLE of dismtribution perameter with partially
grouped samples exists if and only if, when z(‘;.)rlk >0 or for in-
tervals of the first type M,<n and N,, <N . Moreover, MILE is
derived as one and only one solution of likelihood equation
G n 3
9ln Py’ (K) k 9ln fo(xki)
% S o (o T, B
Pt =0, (4)

o 06 @) j=1 06
where % (k) is <the probability occurence in the k ~-th interval,

fg(x) is function dersity.

Likelihood equations for some distribution are presented in table
1. Conditions for the key parameter of Weibull's distribution, :
scale parameters of logistie distribution, Cauchy's, parameter
of G normal distribution and a number of others are more comp-
lex, For instance, for the key paraméter of Weibull's distributi-

11




on with probability density funection }’e(xhg‘ (5)9_’9#-‘ {‘ (g)a}

.we have the following theorem. 2
Theorem 2. MILE of the key parameter of Weibull's distri-
bution with partially grouped sample exists if and only if, when
>N, >0 or for intervals of the first type one of ‘the follo-
w‘?ng eonditions is satisfied:
e) at m=2 n,>n(1-€"') for ¢,>1 or

n,<n(1-e') for ¢, <1}
b) at M >2, 1N, <N, NxuénN, N,+Ny=nend

n, >nm(@'l)lf?. t,,,_,/Zn t, tor t;>1 or

n, <nm(e-1)Zn tm_,_/fn ¢ tor 1]
¢) at M>2 1, +MN ;<M and for some K such that ¢, <1 or

ot 4 >0
Moreover, MLE is determined as solution of likelihood equation
(4)- Here tk = (Xkc-/eq ) e >
There exists a positive probability that MLE of the key parame-
ter is not unique, if the K -th intervel, such that tk-1$ 1< {-k ’
belongs to the first type and a considerable number of observati-
ons falls within it. Conditions of existence and uniqueness of
MLE for some other distributions are presented in the papers of
DENISOV [5], LEMESHKO [6]. In most cases iik#lihood equations. (3)
appear too ecomplex to rely on their explieit solution, though in
partieular cases of grouped sample at the number of intervals
Mm=2 for eertain parameters MLE with grouped data are derived in
explieit form. For instance, parameter estimate of Raley's dist-
ribution witk probability Adenaity funetion

g 2
fo00= X, expl- 32, |

where X>0, 6 > O , MIE with grouped data is determined by an
expression

é':X,G/ ‘/28/7-(/214"'21‘-1)1

and for Weibull's distribution with probability density function

£,00= g(é)e_’exp {- (—%) 9} :

where X >0, 6,6, >0, MLE of one parameter, where the other
one is known, are derived accordingly from expression

12
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—

é=€/2 (bn (n,/ns +1)) / En (X,G/g,)’
6= X/ { b (/s #1)} 172,

In general cases MLE are derived as a result of solving likeli-~

hood equations or a system of likelihood equations by numerical me-
thods,

To solve likelihood equations methods of searching a solution on

- an interval by the type of dichotamy,"golden section", Fibonacci's

numbers, etc., may be applied, But Newton's method or its modi-
fications are the most preferable onea, HIMMELBLAU [7] In cases
when density function is defined by more than one parameter the-
re arises a necessity to solve a sysiem of nonlinear equations.
Though MLE of vector of distribution parameters may be found by
direct search of likelihood function maximum or its logarithm as
well. Both in the first case and in the second one it is more pre-
ferable to use the searching methods of minimization of functions
of many variables.

4. Approximste maximum likelihood estimates

There are many papers, e.g., HARTLEY [8], LINDLEY [¢], TALLIS [10],
in which computation of approximate maximum likelihood estimates
are considered. Moreover, the technique first described in the pa-
rer of LINDLEY [9]9; applied to normal and gamma distributions,
then generalized for multidimensional distributions in the paper
of TATLIS [10] mostiy gmined ground. It consists in replacing the
initial grouped sample by an ungrouped one, in which individual
values are assigned values of interval centre of grouping at their
equal length, and then expressions for corrections derived in re-
search of such procedure of estimates are deduced.

Here we confine the discussion to the case of one-dimentional
probability density fe (x) , having continuous derivatives up to
the third order included, scalar parameter & and grouping of
data, in which all intervals have equal length AX , such that

o == :
U %, = ku[xf‘-ax/z, XE+axsz) =3¢
k=1 =1

where X = (Xk‘f’,erG)/Z_i\s the value of the midpoint of the
-th interval &, k=1,m.

15



Then the probability of obaservation occurence in the K -th in-

terval will be

G XG+A)«/2
BE(k)= f+(x>a/x— ffoodx , (5)
x,,_ XE-nx/2

Let us expand (5) into Taylor's meries in the neighbourhood of

X,f , confining the discussion to the terms of O ((AX)3)- order

infinitesimal, We derive
REK) = ax-£ (XE) + (ax)* £(XE) /24 + (ax)" R,
where £/(x)=02%£,(x)/3 x 2 , R is the remaining term. It is

obvious that

lr PU) = b [ax £,(XE)] + br | 1 + @x)? %' (%) L @R
é ok [ 24 ,(9(;}(@) 46(75)}

Hence, c—‘
2br B 9 @22 (o (X5 3
e e = ) +0(@xy).
And the likelihood equation takes the form of
m - 3 f (), (Ax)2 S (x£) 3
e + 0((4)() ) =0,
kZ= : 26 24 k 4 (f (X§ )/

0
Let £ be the maximum likelihood estimate computed on the basis
of ungrouped data, which are centres of intervals X,f as obser-
ved values . Then

f: nkaelzfgo (X )E
28

A
and the unknown approximate maximum likelihood estimate 0 is
derived as §,=9%A0 , where 46 is a correction for grouping
computed as a result of one iteration of Fewton's method, i.e.,

__@xp[2 9 (F5(XE) 06 foe( K€
== 2Al): [Z;,n“ 69(7[ (X@))J/Z g /zae(x )

or

20 = (8X)* Eo 0 [Fo0(x)/$50(x)1 /56
24  Eg 9%6n Fo(x) /062

b
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vwhere "E" is as formely a symbol o; mathematical expectation.
Asymptotie variance of estimate 6, will be found as

DO)=r![ 1 ~(ax)%24 £, {324 /302 + 4 520, fo(x)/P62 _

-£x) A [ o) »aze@g(x)/aeﬂ}] —’1 (6)
where

I =-Eq {924n £,(x) 1267},

A= £/ () A, =9/%x,

Examp .,

For exponential distribution with the density
function

$,(0) =069, x50, 050

A 1 n _—1
o= [ 1> x] .
J=1
Then as 0° let us take
m S -1
9° = [riL kZ'nkaG] -
=4
Now letus find the value of correction A&
ln f(x)=br6-0x
9lnr ()70 = 1/6 =X
0%n £, (x) /6% = - 1/0 =
Ofo WX = - e2exp(-6x),
0%46(x)/0x2 = 93 eap(-6%).

Hence, £, {azg,zfe(x)/aez}: = {702,

(7

- We have

B 19 feﬂ(x))} _ 0x?*
24 °Gelf,c0l) T 72
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Finally we derive that A8 = (aX)203/12 ., So b, = B+ (ax)2(69)%/ 12
and expression for approximate maximum likelihood estimate in-
volves Sheppard's correction. Or, remembering relation (7), we
derive that

=[5 Z R |1 (52 m R 20,

Using (6) we derive D(é\fz) =n16%[1 ‘(Ax)zez/fz]—f_

And if we let the number of intervals tend to infinity, 7 —=9
which is equivalent to AX-*O and change from grouped data to
ungrouped ones, then 9 ~6, and D(Br)—=D(6) =n"'6% , wni
is in agreement with the eatimate and variance of maximum like-
lihood estimate with ungrouped data. Approximate maximum likeli
hood estimates computed for a number of distributions are compi
led in table 2. >
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