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METHODS FOR DATA PROCESSING

APPLICATION OF THE NONPARAMETRIC GOODNESS-OF-FIT TESTS TO
TESTING NONPARAMETRIC MODEL ADEQUACY*

B.Yu.Lemeshko, S.N.Postovalov, and A.V Frantsuzov

Novosibirsk

The possibility of applying the nonparametric Kolmogorov and also Mises »2 and Q2
goodness-of-fit tests to testing adequacy of the nonparametric models of distribution laws
to observed data is shown. It is demonstrated that when using the nonparametric
estimators the distributions of statistics of goodness-of-fit tests are affected by some
factors determining the composite tested hypothesis H(, such as a random variable
distribution law corresponding to H, a kind of the kernel function, a sample size, and a
method of estimating the fuzziness parameters.

INTRODUCTION

Creation of a measurement system at different stages of development and investigation, certification of
measurement devices, and metrological support of a technological process are necessarily associated with the
need for determining the measurement accuracy, with statistical analysis of observation results, and construction
of models of error distribution laws. Unfortunately, measurement errors are not always described by the normal
distribution law. Moreover, it is not always possible to select from multiple frequently applied distribution laws
a parametric model describing adequately the observed variable. In this case, one tries to use some nonparamet-
ric model law, a nonparametric estimator.

Construction of a probabilistic model for some object includes normally two stages. One chooses the type
of model and estimates if necessary parameters of the model at the first stage, and tests adequacy of the model to
the observed data at the second stage. In parametric statistics, two basic types of problems correspond to these
stages, namely, estimation of parameters and statistical hypothesis testing.

In the simplest situation, when we deal with the observed random variable, in the parametric approach at
the first stage we hypothesize the kind of model of the distribution law, and using samples extracted from the
general set estimate the model parameters. At the second stage, adequacy of the model to observed data is tested

by means of Pearson’s xz, Kolmogorov’s, Mises w2, etc. goodness-of-fit tests.
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Naturally, the limited set of parametric models used most frequently in practice does not always allow
adequate description of actually existing random variables. Recent decades are characterized by active develop-
ment of nonparametric statistics and more frequent applications of the nonparametric methods. The nonparamet-
ric methods are sometimes opposed with parametric ones. The opposition is usually accompanied by not always
reasonable criticism of the parametric approach. In the course of this criticism it is overlooked that application
of the nonparametric estimators of the observed distribution laws has “bottlenecks” either. For example, there is
a problem concerned with the best choice of a fuzziness parameter (parameters) of the employed kernel estima-
tors of density function, and it becomes especially acute in the case of a limited domain of the observed random
variable and finite sample sizes. In the latter case the kernel estimator of the distribution function differs often
substantially from the empirical distribution function at the boundaries of domain (on “tails” of distribution).
The most important point is that the problems of testing adequacy of the nonparametric models are still an open
question.

To our mind, too negative treatment of the parametric methods and opposition to the nonparametric ones
by some authors is not justified: one should apply methods leading to the best results in a concrete situation. The
parametric and nonparametric methods are not mutually exclusive, and the boundary between them starts blur-
ring as the mathematical tools develop. For example, as soon as we begin speaking about the optimal choice of
the fuzziness parameter in a nonparametric model, the principal distinction between such a model and a paramet-
ric model disappears. On the other hand, the nonparametric models and methods have some concrete merits de-
termining growing interest in them in various applications.

At the moment, statisticians focuse maximum effort at finding of more accurate nonparametric estimators
and investigation of properties of the estimators. Researchers do not pay attention to the problem of adequacy of
the obtained nonparametric model of the law. Test of adequacy of the model is the final stage of statistical analy-
sis, it follows after construction of a parametric or nonparametric model of the observed law and substantiates
applicability of the model in a concrete application. The absence of a tool for testing the nonparametric model
adequacy hinders wide application of the methods of nonparametric statistics in practice.

The goal of this paper is to investigate the possibility of testing adequacy of the nonparametric models
with the use of nonparametric Kolmogorov’s and Mises’s o 2 and Q2 goodness-of-fit tests.

Simple nonparametric density estimators. As nonparametric models, in this paper we consider nonpara-
metric Rozenblat-Parzen density estimators [1] having the form
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where x;, i=1,..., n, is the sample of observations of a one-dimensional continuous random variable, A, is the fuzzi-
ness parameter, ¢ (u) is the bell-shaped (kernel) function satisfying the following regularity conditions:
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Asymptotic properties of estimator (1), such as unbias, consistency, and convergence almost surely to the

density f(x), were analyzed in detail in [2-4]. It was shown, in particular, that the root-mean-square error of ap-
proximation of estimator (1), which is defined by the relationship

J=M (L)~ pa(oP dxp =M | £00) - po (o 1, (3)
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depends substantially on the choice of the fuzziness parameter A, and is less dependent on the form of kernel
function @(u).

In this investigation we use two kinds of kernel functions:

1) quadratic kernel function [4] having the best properties in minimizing the root-mean-square error of ap-
proximation (3) in the form
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—F—--——=u" |if <45
o Egd s mda ™ P

0, it |ul>+/5,

)

2) density function of the standard normal law
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The choice of the fuzziness parameter A,, affects substantially the form of the nonparametric estimators of
the density function. Also, the problem of finding the value of this parameter, which is optimal in a certain
sense, exists everywhere. Proceeding from the condition of the minimum root-mean-square error of approxima-
tion (3), the optimal estimator of the fuzziness parameter takes on the form [4]:
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The drawback of estimator (6) is that for its determination we must know the density f(x)of the true ran-
dom variable distribution law that is, generally speaking, unknown.
For n — coexpression (6) tends to n V3 Hence, it is sometimes proposed to choose the fuzziness parameter

equal to:
}t’,, =n5 @)

The fuzziness parameter (or parameters) can be chosen by various methods on a basis of different tests of
optimality [5], e.g., using different measures of proximity of the empirical distribution function and its nonpara-
metric estimator. In this case, however, the advantages of the nonparametric estimators over the parametric mod-
els are lost.

Investigation of behavior of distributions of statistics for the nonparametric goodness-of-fit tests in
nonparametric estimation. Adequacy of the parametric model of the distribution law to the observed data is
most frequently tested using Pearson’s Xz goodness-of-fit tests or nonparametric Kolmogorov’s and Mises w?
and O tests.

Using the goodness-of-fit tests, one should distinguish simple and composite hypotheses. The tested simple
hypothesis has the form Hy:F(x) = F(x, ), where F(x, 0) is the probability distribution function to which the
observed sample is tested for goodness of fit, and @ is the known value of the parameter (scalar or vector pa-
rameter). The composite tested hypothesis is written in the form Hy: F(x) € {F(x,0), 6 € ©} We deal with the
composite hypothesis in the case if it is tested by the same sample as that used to estimate the distribution law

parameters.
As a distance between empirical and theoretical laws the Kolmogorov test uses the variable

Dy, = sup |F, (x) = F(x,0)],

x| < o0
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where F, (x) is the empirical distribution function, and » is the sample size. Researchers use usually statistic of the
form [6]:

s 6nD, + 1 ®)
K= en
where
: - ] - i-1
D,=max(D;, D;); D)= max {"‘“—F(x,, 8)r; D, = max {F(x;,0)-—r;
1<ign” 1<i<n "
n is the sample size; x;, x5, ..., x,, are sample values in increasing order. The distribution of Sy in testing the simple

hypothesis in the limit obeys the Kolmogorov law K (S )[6].
In tests of the o> type the distance between the hypothetical and true distributions is considered in the
quadratic metric

[€ELF, ()~ F oy 2w (F ()dF (),
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where E[-]is the mathematical expectation operator.
In choosing y(¢)=1in the Mises ® £ tests, one uses statistic (Kramer-Mises-Smirnov statistic) of the form
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which obeys the distribution a; (S)[6] in testing a simple hypothesis.
In choosing w(¢)=1/¢(1-¢)in Mises’s Q? tests, the statistic (Anderson-Darling statistic) has the form

n

n
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In the limit, this statistic obeys the distribution a, (S)[6].

In the case of simple hypotheses, the limiting statistic distributions of the nonparametric Kolmogorov,
Mises 0 2 and Q tests do not depend on the kind of the distribution law observed and on its parameters. That is
why these tests are called nonparametric tests and said to be “distribution-free” tests. However, in testing com-
posite hypotheses the “distribution-free” property is lost [7]. It has been found that the conditional distribution
laws of statistics G(S | Hy) of nonparametric goodness-of-fit tests are affected by a number of factors determin-
ing “complexity” of the hypothesis: the type of the observed law F(x,0) corresponding to the true hypothesis
Hy; the type of parameter estimated and the number of parameters to be estimated; sometimes, a concrete value
of the parameter (e.g., in the case of gamma distribution); the method used to estimate the parameters [8—-11].

In this paper we present results on investigating the possibility of applying the nonparametric goodness-
of-fit tests to test adequacy of the nonparametric models of distribution laws (nonparametric estimators) began
in [12]. For this purpose, using the method of computer simulation of statistical regularities [8—11], we investi-
gated: dependences of the distribution of statistics of the previously mentioned goodness-of-fit tests on the type
of kernel functions; variations of the form of these distributions with growing sample size; dependences of sta-
tistic distribution on the law corresponding to the tested hypothesis Hy; influence of the fuzziness parameter on
the distributions of estimation statistics.
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In the nonparametric approach as well as in the parametric one we meet testing of simple and composite
nypotheses. Let us assume that by some earlier observed sample x|, x5, ..., x, we obtained a nonparametric den-
sity estimator of the form (1). The values 6, = x), 0, =x;, ..., 6, =x, may be interpreted as parameters of this
model

- x - 0;
pn(x):';ﬂl—” Z(P[ » j (U

i=1

If adequacy of the nonparametric estimator is tested by a new sample whose size is not necessarily the same, then it
is obvious that we will deal with a simple tested hypothesis. This is a classical case in which the statistics of the Kol-
mogorov and Mises o? and Q2 tests under validity of the tested hypothesis Hj must obey the distributions
K(S), a;(S), and a; (S ), respectively.

In order to see that in the case of a simple hypothesis the distributions K(S), a(S), and ay (S)are really
the limiting distributions of statistics G(S | Hy ), we simulated the random variable samples corresponding to hy-
pothesis H according to (11) by the method of inverse functions. Our simulation has verified that the obtained
empirical distributions of statistics of the tests under investigation are in good agreement with the classical limit-
ing laws K(S), a|(S), and a,(S).For example, Fig. 1 represents results of simulating a distribution of the Kol-
mogorov statistic for the size of samples of the simulated random variables n= 50 and the number of such sam-
ples N =500. The figure shows results on testing goodness-of-fit of the obtained empirical distribution to the dis-

tribution K (S )by Pearson’s Xz, likelihood ratio, Kolmogorov’s, and Mises o 2 and Q? tests. In what follows we

[oe]

present for each test the attained level of significance P{S >S *} = Jg(s | Hy )ds, where S " is the value of the test
g

statistic calculated by the sample; g(s|H) is the limiting distribution density of statistic of the respective test

under validity of hypothesis Hy. (P{S>S i }=0.37264 for the likelihood ratio test; 0.35344 for the Pearson X2

test; 0.14299 for the Kolmogorov test; 0.45431 for the Mises o % test; 0.57374 for the Mises 0* test.)
In the parametric approach we meet a composite hypothesis if testing is preceded by estimation of the
model parameters by the same sample. For a nonparametric model, such a situation in a habitual understanding
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Fig. 1. The Kolmogorov statistic distribution for a simple hypothesis.
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is consistent with the case of estimation by a concrete sample of the fuzziness parameter (or parameters). On the
other hand, in constructing model (1) by the sample, its parameters are estimated implicitly 6, = x,, 8, =
=Xy, ..., 0, =x, (see the model of the form (11)). Testing goodness-of-fit to this model by the same sample,
even without estimating the fuzziness parameter, generally speaking, we are dealing with a composite hypothesis, too.
In order to set apart this situation met most frequently in practice and underline that in this case no parameter es-
timation by any method occurs, we will call it a test of a “quasi-composite” hypothesis.

As in the parametric case, in testing composite (quasi-composite) hypotheses the distributions of statistics
of Kolmogorov’s and Mises’s © 2 and Q7 tests depend on the true distribution law corresponding to hypothesis
H, [7-10]. Figure 2 (a)-(c) that represents results of simulating the statistic distributions of Kolmogorov’s and
Mises’s o 2 and Q2 tests in testing “quasi-composite” hypotheses /{;, demonstrates dependence of the statistic

distributions on the form of the true law corresponding to Hy. When simulating, we chose parameters
0, =x|, 0, =xy, ..., 0, = x, of model (11) corresponding to the true hypothesis H such that the model is close
to one of the following parametric models: the exponential law with the density

1 X —H
exp(H,0)=5exp {f‘g‘}
the Cauchy distribution law with the density

Cauchy(p,0)="——5—""5_,
alo” + (=)’ ]

or the logistic distribution with the density

2
e e} o3

Samples of random variables of the size n= 50 were simulated by (11). To form a sample of statistics we repeated
our experiment N = 500. Obtained results evidently confirm that in testing the quasi-composite hypotheses the distri-
butions of statistics depend substantially on the true law corresponding to H, and differ drastically from the limiting
Kolmogorov distributions, @,(S) and a,(S), in the case of simple hypotheses.

In the parametric case, the distributions of statistics G(S | Hy) of the nonparametric Kolmogorov and
Mises 2 and Q? goodness-of-fit tests depend on the sample size n, but with growing n they quickly converge to
limiting ones for both the simple and composite hypotheses. Starting from the sample size n>15-20 in testing
simple hypotheses and n>20-25 in testing composite hypotheses, one may use the limiting distributions of sta-
tistics [8].

In the case of the nonparametric models in testing composite (quasi-composite) hypotheses we see a
stronger dependence on n and a slower convergence of statistic distributions to limiting ones. Figure 3 shows be-
havior of statistic distributions of the Mises % test under the “quasi-composite” hypothesis, depending on the
size of random variable sample. In this case, when simulating we chose the parameters 0;=x, 0,=
=Xy, ..., 0, =x, of model (1) corresponding to the true hypothesis H; in such a manner that it is close to the lo-
gistic law. The statistic distributions of Kolmogorov and Mises Q? tests change similarly with growing n.

The type of employed kernel functions also affects statistic distributions of the goodness-of-fit tests. For
example, Fig. 4 illustrates dependence of the statistic distributions of the Kolmogorov test for the same “quasi-
composite” hypothesis (close to the logistic law) and n=50on the type of employed kernel functions (4) and (5)
that have a similar effect on behavior of the Mises ® 2 and Q2 statistic distributions. Investigation has shown that
with growing sample size the difference in the statistic distributions of the goodness-of-fit tests under considera-
tion for different kernel functions becomes more essential.

In testing composite hypotheses, when we estimate the fuzziness parameter by the observed sample, the
statistic distributions of the goodness-of-fit tests under consideration depend on the same factors as in the case of
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Fig. 2. Kolmogorov’s (a), Mises’s @’ (b) and e (c) statistic distributions under the “quasi-composite™ hypothesis, depending
on the true law corresponding to hypothesis H .
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Fig. 3. The behavior of Mises o’ statistic distributions in testing the “quasi-composite” hypothesis, depending on the sample
size n.

the “quasi-composite” hypothesis and also on the method of estimating the fuzziness parameter. For example,
Fig. 5 shows statistic distributions of the Kolmogorov goodness-of-fit test under a composite hypothesis (close
to the logistic law), n= 50, using different estimators of the fuzziness parameter, calculated according to (6) and
(7). To compare, the same figure represents Kolmogorov statistic distributions in the case of testing the compos-
ite hypothesis on fitness to the logistic law (parametric model) with simultaneous calculation of maximum likeli-
hood estimators (MLE) of two parameters of this law and with the use of MD (minimum distance) estimators ob-
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Fig. 4. Effect of the type of kernel function on the Kolmogorov statistic distributions in testing the “quasi-composite” hypothesis.
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Fig. 5. Effect of the method of fuzziness parameter estimation on the Kolmogorov statistic distributions in testing a composite
hypothesis.

tained by minimization of statistic of the corresponding goodness-of-fit test [9-11]. The choice of a fuzziness
parameter estimator affects similarly the change in statistic distributions of the Mises 0 > and Q7 tests.

CONCLUSION

Testing of adequacy of the nonparametric models used to describe measurement errors is, of course, neces-
sary. It is obvious that this testing can be performed by using goodness-to-fit tests on the basis of the applied
method.

In testing the adequacy of a nonparametric model we deal with a simple verified hypothesis only in the
case if construction of the estimator and testing for fitness are performed by different samples or by different
parts of a sample. Results of statistical simulation verified that in such situations the testing procedures must be
based on classical results on the limiting statistic distributions of the Kolmogorov and Mises ® 2 and Q? tests:
the Kolmogorov distributions, a; (S yand a, (S ), respectively.

Testing of composite hypotheses on goodness-of-fit by the Kolmogorov and Mises o % and Q? tests with
the use of nonparametric models compared with application of parametric models is characterized by a great va-
riety of factors determining “complexity” of the hypothesis. Statistic distributions of the tests under considera-
tion are affected substantially by: the true distribution law of the observed random variable, which corresponds
to the tested hypothesis Hyj; the kind of the kernel function used; the sample size; the method of estimating (kind
of estimator) the fuzziness parameter (or parameters). Compared with testing fitness with parametric models, we
must underline specifically the greater dependence of the statistic distributions on the sample size. This is ex-
plained by the fact that each new sample element used in the nonparametric estimator is an additional “esti-
mated” parameter of the model. It is exactly this fact that is the principal distinction of the problem of testing
composite goodness-of-fit hypotheses with the use of the parametric models.

Our investigation has shown the possibility of using the nonparametric goodness-of-fit tests for testing
adequacy of the nonparametric models of distribution laws with simple and composite hypotheses, and the possi-
bility of constructing the models of statistic distributions of goodness-of-fit tests for different tested composite
hypotheses.

11
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Obviously, the variety of composite hypotheses is so great that it is impossible to construct beforehand
the models of statistic distributions of the goodness-of-fit tests for each concrete type of composite hypothesis
specified by the kind of nonparametric estimator. However, using the employed computer simulation method,
for a concrete composite tested hypothesis (the law corresponding to Hy; a concrete type of nonparametric esti-
mator; sample size; method for estimating the fuzziness parameter), one can always construct a model of statistic
distribution of the goodness-of-fit test used and, therefore, ensure adequate testing of the nonparametric

model.
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