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In this paper, the problems of application of nonparametric goodness-of-fit tests in the 

case of composite hypotheses have been considered. The factors influencing test statistic 

distributions have been discussed. A manual on application of nonparametric tests have 

been prepared. The proposed recommendations would reduce errors in statistical 

inference when using considered tests in practice. 
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1.   Introduction 

In applications of statistical data analysis, there are a lot of examples of incorrect 

usage of nonparametric goodness-of-fit tests (Kolmogorov, Cramer-von Mises 

Smirnov, Anderson-Darling, Kuiper, Watson, Zhang tests). The most common 

errors in testing composite hypotheses are associated with using classical results 

obtained for simple hypotheses.  

There are simple and composite goodness-of-fit hypotheses. A simple 

hypothesis tested has the following form 0H : ( ) ( , )F x F x= θ , where ( , )F x θ  is 

the distribution function, which is tested for goodness-of-fit with observed 

sample, and θ  is an known value of parameter (scalar or vector). A composite 

hypotheses tested has the form 
0

H : { }( ) ( , ), ,F x F x∈ ∈ Θθ θ  where Θ  is the 

definition domain of parameter θ . If estimate θ̂  of scalar or vector parameter of 

tested distribution was not found by using the sample, for which goodness-of-fit 

hypothesis is tested, then the application of goodness-of-fit test for composite 

hypothesis is similar to the application of test in the case of simple hypothesis. 

                                                           
*
 This work is supported by the Russian Ministry of Education and Science (project 2.541.2014K). 
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The problems arise in testing composite hypothesis, when estimate θ̂  of the 

distribution parameter was found by using the same sample on which goodness-

of-fit hypothesis is tested.  

2.   Goodness-of-fit tests for simple hypotheses 

In the case of simple hypotheses, nonparametric tests are “free from 

distribution”, i.e. the limiting distribution of statistics of classical nonparametric 

goodness-of-fit tests do not depend on a tested distribution and its parameters. 

The Kolmogorov test (which is usually called the Kolmogorov–Smirnov 

test) is based on statistic  

 sup ( ) ( , )
n n

x

D F x F x
<∞

= − θ , (1) 

where ( )
n

F x  is the empirical distribution function; ( , )F x θ  is the hypothetical 

distribution function; n  is the sample size. The limiting statistic distribution for 

testing simple hypothesis has been obtained by Kolmogorov in Ref. [6]. The 

distribution function of 
n

n D⋅  uniformly converges to the Kolmogorov 

distribution function ( )K S  as n → ∞ , see Ref. [3, 11]. 

The Kolmogorov test is recommended to be used with Bolshev’s correction, 

see Ref. [3, 11]:  

 
6 11

6 6

n

K n

nD
S nD

n n

+

= + = , (2) 

where 

( )max ,
n n n

D D D
+ −

= , 
1
max ( , )

n i
i n

i
D F x

n

+

≤ ≤

 
= − 

 
θ , 

1

1
max ( , )

n i
i n

i
D F x

n

−

≤ ≤

− 
= − 

 
θ ,  

1 2 n
x x x≤ ≤ ≤…  is the variational series (the sample sorted in increasing order).  

The Cramer-von Mises Smirnov test is based on statistic 

 

2

2

1

1 2 1
( , )

12 2

n

n i

i

i
S n F x

n n
=

− 
= = + − 

 
∑ω

ω θ , (3) 

which has distribution 1( )a s , when a simple hypothesis is tested, see Ref. [3, 

11]. 

Statistic of the Anderson-Darling test has the form (Ref. [1, 2]) 

 
1

2 1 2 1
2 ln ( , ) 1 ln(1 ( , ))

2 2

n

i i

i

i i
S n F x F x

n n
Ω

=

 − −  
= − − + − −  

  
∑ θ θ  (4) 

and has distribution 2( )a s for simple hypotheses, see Ref. [3, 11]. 

The Kuiper test is based on statistic 
n n n

V D D
+ −

= +  (Ref. [7]). It is 

preferred to use it in the form (Ref. [25]) 
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0.24

0.155
n

V V n

n

 
= + + 

 
, (5) 

or in the form (Ref. [8]) 

 
1

( )
3

mod

n n n
V n D D

n

+ −

= + + . (6) 

This statistic has distribution ( )
2 22 2 2

1
1 2(4 1) m s

m
Ku s m s e

∞
−

=

= − −∑ , see Ref. [7]. 

The statistic of Watson test has the form (Refs. [26, 27]) 

 ( ) ( )

2

2

2

1 1

1

1 1 12, ,
2 12

n n

n i i

i i

i

U F x n F x
n n n

= =

 
−   

= − − − +   
   

 

∑ ∑θ θ  (7) 

and has distribution ( )
2 21 2

1
1 2 ( 1)m m s

m
W s e

π
∞

− −

=

= − −∑  for simple hypotheses 

tested. 

The statistics of Zhang test can be written as (Refs. [8]) 

 
{ } { }

1

log ( , ) log 1 ( , )

1 1

2 2

n

i i

A

i

F x F x
Z

n i i=

 
 −

= − + 
 − + −

 

∑
θ θ

, (8) 

 
[ ]

2

1

1

( , ) 1
log

1 3
( ) / ( ) 1

2 4

n

i

C

i

F x
Z

n i

−

=

  
  −

=   
  − − −

   
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θ

, (9) 

 
{ }1

1 1

1 12 2max log log
2 ( , ) 2 1 ( , )

K
i n

i i

i n i

Z i n i
nF x n F x≤ ≤

    
− − +       

= − + − +       
−        

    

θ θ

.(10) 

The tests based on statistics 
A

Z  and 
C

Z  have higher power in comparison 

with the Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling tests. 

However, the application of these powerful tests is complicated because of the 

dependence of statistic distributions on the sample size.  

3.   Problems of application of tests for composite hypotheses 

In the case of testing composite hypotheses, all nonparametric goodness-of-fit 

tests lose their property of being distribution free, if  parameters estimation is 

based on the same sample, on which the hypothesis is tested. Statistic 

distributions 0( )G S H  of these tests depend on: 
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− distribution ( , )F x θ  corresponding to tested hypothesis 0H  (see 

Fig. 1);  

− the type and the number of parameters estimated;  

− the estimation method used (see Fig. 2); 

− in some cases, a particular value of parameter (for example, in the case 

of gamma-distribution).  

The statistic distributions for simple hypotheses and the distributions of the 

same statistics for composite hypotheses are quite different. Therefore, it is 

unacceptable to disregard this difference. 

On Fig. 1, empirical distributions 0( )
n

G S H  of Cramer-von Mises-Smirnov 

statistic S
ω

 are presented for the case of testing composite hypothesis 0H , 

when the maximum likelihood method is used for estimation of two parameters. 

The dependence of the test statistic distribution on estimation method used is 

shown on Fig. 2. There are density functions 0( )
n

g S H  of Kolmogorov test 

statistic 
K

S  with the following methods for estimating parameters of the normal 

distribution: the methods based on minimizing statistics 
K

S , S
ω

, S
Ω

 (MD-

estimates) and the maximum likelihood method. 
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0.00 0.03 0.06 0.09 0.11 0.14 0.17 0.20  

Fig. 1.  Distributions ( )0G S Hn  of Cramer-von Mises-Smirnov test statistic Sω
 in the case of 

estimation of two parameters of the distribution corresponding to 0H  (1 – normal, 2 – logistic, 3 – 

Laplace, 4 – extreme-value (minimum), 5 – Cauchy), maximum likelihood method is used, 1( )a s is 

the distribution function for simple hypotheses tested. 

 

Moreover, the greatest problem consists in the dependence of test statistic 

distributions on specific value of the distribution shape parameter. For example, 

in the case of generalized normal distribution with density 
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2

02

1 2 1

( ) exp
2 (1 / )

x
f x

  −  
= −  

Γ    

θ

θθ

θ θ θ

, (11) 

the value of shape parameter 
2

θ  influences the statistic distributions of 

nonparametric goodness-of-fit tests. Such influence is illustrated on Fig. 3 in the 

case of estimating three parameters of (11) by the maximum likelihood method. 

 

 

Fig. 2.  Distribution densities ( )0g S Hn  of statistic SK  in the case of testing composite hypothesis 

( 0H  – normal distribution, two parameters estimated: 1 – MD-estimates SK ; 2 – MD-estimates 

Sω
; 3 – MD-estimates SΩ

; 4 – maximum likelihood method; ( )k s  –density of Kolmogorov 

distribution). 
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Fig. 3.  The dependence of statistic distribution of the Kolmogorov test on the value of shape 

parameter 2
θ , when three distribution parameters of the generalized normal distribution are 

estimated. 
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4.   Application of tests for composite hypotheses: solution of problems 

The investigation of limiting statistic distributions of nonparametric goodness-

of-fit tests for composite hypotheses was initiated in Ref. [5]. 

Various approaches have been used for solving problems in this area: the 

limiting statistic distributions have been studied by analytical and numerical 

methods. In particular cases, the tables of percentage points for the limiting 

statistic distributions of nonparametric tests have been obtained by using 

statistical simulation methods.  

Apparently, the first papers, in which the Monte-Carlo method and compu-

ter simulation appeared to be an efficient method for the development of applied 

mathematical statistic, were Refs. [22, 23]. In these papers, the percentage points 

for the Kolmogorov test statistic (without Bolshev’s correction) were obtained 

for testing composite hypotheses relative to normal distribution law. 

In a number of our papers, the analytically simple models, approximating 

the limiting statistic distributions of nonparametric tests in the case of testing 

composite hypotheses, when unknown parameters are estimated with the ma-

ximum likelihood method, have been constructed by using computer simulate-

on of statistic distributions relative to various distributions corresponding to 

hypothesis 0H . The recommendations for standardization R 50.1.037-2002 

have been published on the basis of these studies (Ref. [24]). Later, results 

presented in Ref. [24] have been made more precise and extended in Refs. [8-

16]. At present, the manual (Ref. [17]) based on obtained results has been 

prepared and intended to replace recommendations in Ref. [24]. 

The manual Ref. [17] includes the tables of percentage points and the 

models of limiting statistic distributions of nonparametric tests (altogether 63 

tables), which can be used for testing various composite hypotheses (on the 

following distributions: exponential, seminormal, Rayleigh, Maxwell, Laplace, 

normal, log-normal, Cauchy, logistic, extreme-value (minimum and maximum), 

Sb-Johnson, Sl-Johnson, Su-Johnson, Weibull, generalized Weibull, family of 

gamma-distribution, family of beta-distribution, generalized normal, inverse 

Gaussian distribution). Moreover, the manual includes the description of 

computer simulation techniques for research of probabilistic regularities, 

which can be used for investigation of test statistic distributions. 

The tables of percentage points and the models of test statistics distributions 

were based on simulated samples of the statistics with size 610N = . The 

difference between actual distribution 0
( )G S H  and empirical distribution 

0
( )

N
G S H  does not exceed 10

-3
 for such N . The values of the test statistic 

were calculated using samples of pseudorandom values simulated for the 
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observed distribution ( , )F x θ  with the size 310n = . In such a case, distribution 

0
( )

n
G S H  practically equal to the limiting one 0

( )G S H . The given models 

can be used for statistical analysis if the sample sizes 25n > . 

Unfortunately, the dependence of the nonparametric goodness-of-fit tests 

statistics distributions for testing composite hypotheses on the values of the 

shape parameter (or parameters) (see Fig. 3) appears to be for many parametric 

distributions implemented in the most interesting applications, particularly in 

problems of survival analysis and reliability. This is true for families of gamma-, 

beta-distributions of the 1st, 2nd and 3rd kind, generalized normal, generalized 

Weibull, inverse Gaussian distributions, and many others. 

5.   An interactive method to study distributions of statistics  

In the cases, when statistic distributions of nonparametric tests depend on a 

specific values of shape parameter(s) of tested distribution, the statistic 

distribution cannot be found in advance (before computing corresponding 

estimates). In such situations, it is recommended to find the test statistic 

distribution by using interactive mode in statistical analysis process, see Ref. 

[18], and then, to use this distribution for testing composite hypothesis.  

The dependence of the test statistics distributions on the values of the shape 

parameter or parameters is the most serious difficulty that is faced while 

applying nonparametric goodness-of-fit criteria to test composite hypotheses in 

different applications. 

Since estimates of the parameters are only known during the analysis, so the 

statistic distribution required to test the hypothesis could not be obtained in 

advance. For the criteria with statistics (8) - (10), the problem is harder to be 

solved as statistics distributions depend on the samples sizes. Therefore, the 

statistics distributions of applied test should be obtained interactively during 

statistical analysis (see Ref. [19, 20]), and then should be used to make 

conclusions about composite hypothesis under test. 

The implementation of such an interactive mode requires a developed 

software that allows parallelizing the simulation process and taking available 

computing resources. The usage of parallel computing enables to decrease the 

time of simulation of the required test statistic distribution 0
( )

N n
G S H  (with the 

required accuracy), which is used to calculate the achieved significance level 
*{ }

n
P S S≥ , where *

S  is the value of the statistic calculated using an original 

sample. 

In the software system (see Ref. [4]), the interactive method for the  

research of statistics distributions is implemented for the following 

nonparametric goodness-of-fit tests: Kolmogorov, Cramer-von Mises-Smirnov, 

 A
dv

an
ce

d 
M

at
he

m
at

ic
al

 a
nd

 C
om

pu
ta

tio
na

l T
oo

ls
 in

 M
et

ro
lo

gy
 a

nd
 T

es
tin

g 
X

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

B
IR

M
IN

G
H

A
M

 o
n 

09
/0

2/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



 61 

 

9610-07:Advanced Mathematical and Computational Tools 

Anderson-Darling, Kuiper, Watson and three Zhang tests. Moreover, the 

different methods of parameter estimation can be used there. 

The following example demonstrates the accuracy of calculating the 

achieved significance level depending on sample size N  of simulated 

interactively empirical statistics distributions (Software system, Ref. [4]). 

Example. It is necessary to check a composite hypothesis on goodness-of-fit of 

the inverse Gaussian distribution with the density function 
1/2 2

3
0 1

20

3

2 2 33
1

22

1
( ) exp

22

x

f x
xx

     −
 −          

= −    − −               

θ
θ θ

θθ

θ θθ
θπ

θθ

 

on the basis of the following sample of the size n =100: 

0.945 1.040 0.239 0.382 0.398 0.946 1.248 1.437 0.286 0.987 

2.009 0.319 0.498 0.694 0.340 1.289 0.316 1.839 0.432 0.705 

0.371 0.668 0.421 1.267 0.466 0.311 0.466 0.967 1.031 0.477 

0.322 1.656 1.745 0.786 0.253 1.260 0.145 3.032 0.329 0.645 

0.374 0.236 2.081 1.198 0.692 0.599 0.811 0.274 1.311 0.534 

1.048 1.411 1.052 1.051 4.682 0.111 1.201 0.375 0.373 3.694 

0.426 0.675 3.150 0.424 1.422 3.058 1.579 0.436 1.167 0.445 

0.463 0.759 1.598 2.270 0.884 0.448 0.858 0.310 0.431 0.919 

0.796 0.415 0.143 0.805 0.827 0.161 8.028 0.149 2.396 2.514 

1.027 0.775 0.240 2.745 0.885 0.672 0.810 0.144 0.125 1.621 

The shift parameter 
3

θ  is assumed to be known and equal to 0. 

The shape parameters 
0

θ , 
1

θ , and the scale parameter 
2

θ  are estimated 

using the sample. The maximum likelihood estimates (MLEs) calculated using 

the sample above are the following 
0
ˆ 0.7481=θ , 

1
ˆ 0.7808=θ , 

2
ˆ 1.3202=θ . The 

statistics distributions of nonparametric goodness-of-fit tests depend on the 

values of the shape parameters 
0

θ  and 
1

θ  (see Ref. [21]), does not depend on 

the value of the scale parameter 
2

θ  and have to be calculated using values 

0
0.7481=θ , 

1
0.7808=θ .  

The calculated values of the statistics *
iS  for Kuiper, Watson, Zhang, 

Kolmogorov, Cramer-von Mises-Smirnov, Anderson-Darling tests and achieved 

significance levels for these values 
*

0{ }iP S S H≥  (p-values), obtained with 

different accuracy of simulation (with different sizes N  of simulated samples of 

statistics) are given in Table 1. 
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The similar results for testing goodness-of-fit of the Г-distribution with the 

density: 
1

1 0 3

2

1

31

2 0 2

( )
( )

x

x
f x e

−  −

−  
 

 −

=  
Γ  

θ

θ θ θ

θθθ

θ θ θ

 

on the given sample, are given in Table 2. The MLEs of the parameters are 

0
ˆ 2.4933=θ , 

1
ˆ 0.6065=θ , 

2
ˆ 0.1697=θ , 

4
ˆ 0.10308=θ . In this case, the distribu-

tion of test statistic depends on the values of the shape parameters 
0

θ  and 
1

θ . 

 

 

Table 1. The achieved significance levels for different sizes N  when testing goodness-of-fit of the 

inverse Gaussian distribution 

The values of 

tests statistics 
310N =  

410N =  
510N =  

610N =  

1.1113mod

n
V =  0.479 0.492 0.493 0.492 

2 0.05200
n

U =  0.467 0.479 0.483 0.482 

3.3043
A

Z =  0.661 0.681 0.679 0.678 

4.7975
C

Z =  0.751 0.776 0.777 0.776 

1.4164
K

Z =  0.263 0.278 0.272 0.270 

0.5919
K

S =  0.643 0.659 0.662 0.662 

0.05387S
ω

=  0.540 0.557 0.560 0.561 

0.3514S
Ω

=  0.529 0.549 0.548 0.547 

 

 

Table 2. The achieved significance levels for different sizes N  when testing goodness-of-fit of the 

Г-distribution 

The values of 

tests statistics 
310N =  

410N =  
510N =  

610N =  

1.14855mod

n
V =  0.321 0.321 0.323 0.322 

2 0.057777
n

U =  0.271 0.265 0.267 0.269 

3.30999
A

Z =  0.235 0.245 0.240 0.240 

4.26688
C

Z =  0.512 0.557 0.559 0.559 

1.01942
K

Z =  0.336 0.347 0.345 0.344 

0.60265
K

S =  0.425 0.423 0.423 0.424 

0.05831S
ω

=  0.278 0.272 0.276 0.277 

0.39234S
Ω

=  0.234 0.238 0.238 0.237 
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Fig. 4 presents the empirical distribution and two theoretical ones (IG-

distribution and Г-distribution), obtained by the sample above while testing 

composite hypotheses. 

The results presented in Table 1 and Table 2 show that estimates of p-value 

obtained for IG-distribution higher than estimates of p-value for the Г-

distribution, i.e. the IG-distribution fits the sample given above better than the Г-

distribution. Moreover, it is obvious that the number of simulated samples of 

statistics 
410N =  is sufficient to obtain the estimates of p-value with desired 

accuracy in practice, and this fact does not lead to the noticeable increase of 

time of statistical analysis. 

 

 

Fig. 4. Empirical and theoretical distributions (IG-distribution and Г-distribution), calculated using 

given sample 

6.   Conclusion 

The prepared manual for application of nonparametric goodness-of-fit 

tests (Ref. [17]) and the technique of interactive simulation of tests statistic 

distributions provide the correctness of statistical inferences when testing 

composite and simple hypotheses. 
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