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INTRODUCTION

For several reasons, the probability distribution law is prominent in the problems of statistical analysis.
Uniformity is often used as a model for describing the measurement errors of some devices or systems, which
is not least due to the lack of information. Naturally, its unjustified use can cause problems.

The hypothesis of uniformity of random variables (measurement errors) can be subjected to different
statistical tests of a fairly long list that can be divided into two subsets. These include general goodness-
of-fit tests used for uniformity and special tests meant only for the hypothesis of uniformity of the sam-
ple X1, X2, . . . , Xn.

There are multiple tests available for professionals which makes it difficult for them to choose as the data
given in the publications do not allow one to opt for a certain test, and every professional wants a chosen
test (or tests) to be correct and statistical conclusions to be of high quality (reliable).

A plurality of considered tests can be used for a simple hypothesis of uniformity of random variable X on
the interval [0, 1] or on the interval [a, b] with known a and b, or for a composite hypothesis where a and b
are unknown.

Usually a simple testable hypothesis of uniformity of the sample X1, X2, . . . , Xn of independent observa-
tions of a random value of X has the form: H0: F (x) = x, x ∈ [0, 1].

Most of the tests for the hypothesis of uniformity on the interval [0, 1] are based on the estimates of order
statistics of a random value X (on the elements x(i) of the ordered series 0 < x(1) < x(2) < . . . < x(n) < 1
constructed according to the sample X1, X2, . . . , Xn). Further, the following denotations are used in the
statistic tests: Ui = x(i), i = 1, n, U0 = 0, and Un +1 = 1.

As a rule, tests are aimed at a simple hypothesis H0 on the interval [0, 1]. If it is necessary to test the
simple hypothesis of uniformity of the sample X1, X2, . . . , Xn on the interval [a, b] (with shift parameter a and
scale parameter b− a), all uniformity tests can be used by converting the elements x(i) of the ordered series
a < x(1) < x(2) < . . . < x(n) < b constructed according to the sample X1, X2, . . . , Xn into corresponding
(required in the tests) order statistics the following way: Ui = (x(i)−a)/(b−a), i = 1, n, U0 = 0, Un + 1 = 1.
The rest of the procedure of applying uniformity tests remains unchanged (as on the interval [0, 1]).

When testing the composite hypothesis of uniformity of the form H0: F (x) = (x− a)/(b− a), x ∈ [a, b],
where a and b are unknown and should be found according to the same sample, we use the elements of
the ordered series x(1) < x(2) < . . . < x(n) constructed according to the sample X1, X2, . . . , Xn to find the
parameter estimates:
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Fig. 1. Fig. 2.

â = x(1) −
x(n) − x(1)

n− 1
, b̂ = x(n) +

x(n) − x(1)

n− 1
.

It is evident that testing the composite hypothesis of uniformity of the sample X1, X2, . . . , Xn on the
interval [â, b̂] obtained according to this sample is equivalent to testing the simple hypothesis of uniformity
of part of the sample of size n − 2 (a certain part of the ordered series x(2) < x(3) < . . . < x(n− 1)) on
the interval [x(1), x(n)] that corresponds to the scope of the sample. Any tests considered in this paper
can be applied to this hypothesis if the required values of the order statistics are determined according to
expressions Ui− 1 = (x(i) − x(1))/(x(n) − x(1)), i = 2, (n− 1), U0 = 0, Un− 1 = 1.

Note that generally the use of nonparametric goodness-of-fit tests for composite hypotheses with regard
to different parametric models of probability distribution laws is seriously complicated due to the dependence
of test statistic distribution on a number of factors [1]. Obviously, such a problem does not arise in the case
of nonparametric tests used for composite hypotheses of uniformity.

Note. Sometimes testing composite hypotheses that a sample belongs to some parametric law comes
down to testing a hypothesis of uniformity on the interval [0, 1]. Similarly, solving statistical analysis
problems usually leads to testing uniformity on the interval [0, 1], e.g., when it comes to testing the adequacy
of constructed wait-and-see models and reliability models. In these situations, using the above-described
approach to testing complex hypotheses of uniformity would be incorrect.

The purpose of studies whose results are described in this paper is to show the features of application
of tests for the hypotheses of uniformity of the sample under analysis, to compare the power of considered
tests with regard to some close competing hypotheses, and to match the power of goodness-of-fit tests with
the power of special tests solely focused on uniformity.

COMPETING HYPOTHESES UNDER CONSIDERATION

The results of testing hypotheses are associated with errors of two types: type I error is rejection of
hypothesis H0 when it is correct and type II error is acceptance (not rejection) of hypothesis H0 as correct
while the competing hypothesis H1 is correct. Significance level α defines the probability of type I error.

Typically, a specific competing hypothesis is not considered when using tests for hypotheses. In this case,
when hypotheses are tested for a type of law, it can be assumed that the competing hypothesis has the form
H1: F (x) 6= F (x, θ0); here F (x, θ0) corresponds to the tested hypothesis H0. If the hypothesis H1 has, for
example, the form H1 F (x) = F1(x, θ), then setting the value of α for the used test also determines the
type II error probability β. Test power is 1− β. Obviously, the higher the test power for a given value of α,
the better it distinguishes the hypotheses H0 and H1.

Naturally, the most interesting is the ability of tests to distinguish close competing hypotheses. It is the
analysis of close alternatives that helps find the subtle aspects that characterize the real properties of tests
and to identify the key shortcomings and advantages.

In this work, the power of all the considered tests was investigated with respect to three competing
hypotheses that correspond to an observed random variable that belongs to the family of beta distributions
of type I with density function
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f(x) =
1

θ2B(θ0, θ1)

(x− θ3

θ2

)θ0− 1(
1− x− θ3

θ2

)θ1− 1
,

where B(θ0, θ1) = Γ(θ0)Γ(θ1)/Γ(θ0 + θ1) is the beta function; θ0, θ1 ∈ (0,∞) is the shape parameter;
θ2 ∈ (0,∞) is the scale parameter; θ3 ∈ (−∞,∞) is the shift parameter; x ∈ [0, θ2].

Let the beta distribution function of type I with specific parameter values be denoted as BI(θ0, θ1, θ2, θ3).
Then the three considered competing hypotheses H0, H1, and H2 that are quite close to H3 take the following
form:

H1: F (x) = BI(1.5; 1.5; 1; 0), x ∈ [0, 1];

H2: F (x) = BI(0.8; 1; 1; 0), x ∈ [0, 1];

H3: F (x) = BI(1.1; 0.9; 1; 0), x ∈ [0, 1].

The probability distribution functions corresponding to the considered hypotheses are shown in Fig. 1,
and the density distributions are in Fig. 2. As can be seen, the distribution functions of the laws for the
hypotheses H1, H2, and H3 are not so different from the uniformity distribution function, but the densities
of the laws differ significantly.

It should be noted that competing hypothesis H1 corresponds to the law whose distribution function
intersects that of uniformity; in the case of H2 and H3, the law distribution functions lie above or below the
function of the uniform law. The ability of tests to differentiate hypotheses H0 and H1, H0 and H2, or H0

and H3 turn out to be different.
It should be especially emphasized that the analysis of the test power with regard to hypothesis H1 reveals

the inability of most nonparametric goodness-of-fit tests to distinguish H1 from H0 with small sampling
volumes n and low significance levels α, i.e., it shows that some tests are biased (the power 1− β is smaller
than α). Moreover, this drawback appears to be peculiar not only for most nonparametric goodness-of-fit
tests, but also for most special uniformity tests.

APPLICATION OF GOODNESS-OF-FIT TESTS

Uniformity can be tested by using all the goodness-of-fit tests without exception.
When it comes to the Kolmogorov test [2], we test the hypothesis H0 of uniformity of the sample by

using a statistic with correction in the form [3]

SK =
√

nDn + 1/6
√

n, (1)

where Dn = max(D+
n , D−n ), D+

n = max
1≤ i≤n

{i/n− Ui}, D−n = max
1≤ i≤n

{Ui − (i− 1)/n}. If the simple testable

hypothesis H0 is valid, the limiting statistic distribution (1) is the Kolmogorov distribution with a function

K(s) =
∞∑

k =−∞
(−1)ke−2k2s2 .

In the Kuiper test [4, 5], the distance between the empirical and theoretical law is a variable calculated
from the expression Vn = D+

n + D−n .
The dependence of the distribution of the statistic

√
nVn used in the test on n can be reduced by applying

the statistic versions [6] or [7], respectively:

V = Vn(
√

n + 0.155 + 0.24/
√

n), (2)

V mod
n =

√
n Vn + 1/3

√
n. (3)

When testing the simple hypothesis H0, the limiting distribution of statistics (2) and (3) is the distribu-
tion [4, 5]

Kuiper(s) = 1−
∞∑

m = 1

2(4m2s2 − 1)e−2m2s2 .
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After testing for uniformity, the statistic of the Cramer — von Mises — Smirnov test ω2 takes the form

Sω = nω2
n =

1
12n

+
n∑

i = 1

{
Ui −

2i− 1
2n

}2
. (4)

If the simple hypothesis H0 is valid, statistic (4) in the limit obeys the law with the distribution function a1(s)
of the form [3]

a1(s) =
1√
2s

∞∑
j = 0

Γ(j + 1/2)
√

4j + 1
Γ(1/2)Γ(j + 1)

exp
{
− (4j + 1)2

16s

}{
I−1/4

[ (4j + 1)2

16s

]
− I1/4

[ (4j + 1)2

16s

]}
,

where I−1/4(·) and I1/4(·) are the modified Bessel functions of the form

Iν(z) =
∞∑

k = 0

(z/2)ν + 2k

Γ(k + 1)Γ(k + ν + 1)
, |z| < ∞, | arg z| < π.

In the case of testing uniformity, the Watson test statistic [8, 9] is given by the following expression:

U2
n =

n∑
i = 1

(
Ui −

i− 1/2
n

)2
− n

( 1
n

n∑
i = 1

Ui −
1
2

)2
+

1
12n

. (5)

If H0 is valid, statistic (5) in the limit obeys the law with the distribution function [8, 9]

Watson(s) = 1− 2
∞∑

m = 1

(−1)m− 1e−2m2π2s.

In the case of testing uniformity, the statistic of the Anderson — Darling goodness-of-fit test Ω2 [10, 11]
takes the form

SΩ = −n− 2
n∑

i = 1

{2i− 1
2n

lnUi +
(
1− 2i− 1

2n

)
ln(1− Ui)

}
. (6)

If the simple testable hypothesis H0 is valid, statistic (6) in the limit obeys the law with the distribution
function [3]

a2(s) =
√

2π

s

∞∑
j = 0

(−1)j
Γ(j + 1/2)(4j + 1)

Γ(1/2)Γ(j + 1)
exp

{
− (4j + 1)2π2

8s

}
×

×
∞∫
0

exp
{ s

8(y2 + 1)
− (4j + 1)2π2y2

8s

}
dy.

Zhang [12] describes the nonparametric goodness-of-fit tests whose statistics take the following form in
the case of testing the simple hypothesis of uniformity of the analyzed sample on the interval [0, 1]:

ZA = −
n∑

i = 1

[ lnUi

n− i + 1/2
+

ln{1− Ui}
i− 1/2

]
, (7)

ZC =
n∑

i = 1

[
ln

{ U−1
i − 1

(n− 1/2)/(i− 3/4)− 1

}]2
, (8)

ZK = max
1≤ i≤n

((
i− 1

2

)
ln

{ i− 1/2
nUi

}
+

(
n− i +

1
2

)
ln

[n− i + 1/2
n(1− Ui)

])
. (9)

The Zhang tests are the development of the Anderson — Darling, Cramer — von Mises — Smirnov, and
Kolmogorov tests, respectively. Application of the tests with statistics (7)–(9) is complicated by the strong
dependence of the statistic distributions on the sample volume n.
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One of the factors supporting the application of nonparametric goodness-of-fit tests for uniformity is the
known limiting statistic distribution that can be used to computate the achieved significance level usually
for the sample volumes n ≥ 25. Exceptions are the Zhang tests where the statistic distributions depend on n
because of which hypotheses have to be tested with the help of the tables of percentage points.

When using the Pearson test χ2, the range of the random variable is divided into k non-overlapping
intervals by boundary points and the number of observations ni fallen into the ith interval and the proba-

bility Pi of falling into the interval are counted. In this case, n =
k∑

i = 1
ni,

k∑
i = 1

Pi(θ) = 1. The test statistic

is calculated from the expression

X2
n = n

k∑
i = 1

(ni/n− Pi(θ))2

Pi(θ)
. (10)

If the simple testable hypothesis H0 is valid, statistic (10) asymptotically obeys the χ2
k− 1 distribution.

It is noteworthy that statistic (10) is a discrete random variable and its actual distribution G(X2
n |H0) may

differ significantly from the asymptotic χ2
k− 1 distribution in the case of validity of the tested hypothesis H0

and bounded n. For example, Fig. 3 shows the dependence of the test statistic distribution (if H0) is valid)
on the sample volume n with the range divided into intervals of equal probability (number of intervals k = 4).
The use of equiprobable grouping in testing uniformity is quite logical. As the actual statistic distribution is
discrete, the estimate of the achieved significance level calculated in accordance with the χ2

k− 1 distribution
is erroneous.

As the number of discrete intervals increases, the discrete distribution of the statistic rapidly converges to
the continuous χ2

k− 1 distribution, but this does not imply an increase in the test power. The test power χ2

depends on the considered alternative (laws that correspond to testable and competing hypotheses) and on
the method of dividing into intervals and their number [13, 14].

For example, Fig. 4 shows the dependence of the Pearson test power relative to H1, H2, and H3 on the
number of intervals k (division of the range into equiprobable grouping intervals). The results are shown for
the sample volume n = 100 and the given probability of the type I error (significance level) α = 0.1.

GOODNESS-OF-FIT TEST POWER ANALYSIS

Based on the power estimates derived in [15], the goodness-of-fit tests used for uniformity can be arranged
in the order of descending power with regard to the competing hypothesis H1 (in the case of intersection of
the distribution law functions corresponding to H0 and H1)):

ZA Zhang � ZC Zhang � Watson � Kuiper � ZK Zhang � χ2 Pearson �

� Anderson—Darling � Cramer— von Mises —Smirnov � Kolmogorov.
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It should be noted that the bias of the Kolmogorov, Cramer — von Mises — Smirnov, and Anderson —
Darling tests (relative to hypotheses such as H1)) for small sample volumes n and low significance level α is
mentioned for the first time in [15]. The Zhang tests with statistics ZK and ZC are biased as well, and the
test with statistic ZA is biased to a smaller extent. The fact that the goodness-of-fit tests with statistics ZA
and ZC are biased relative to some competing hypotheses is found when testing the hypotheses that the
samples belong to the normal law [16].

The bias is illustrated in Fig. 5 that shows the distribution of the Cramer — von Mises test statistic
G(S |H0) with validity of the testable hypothesis H0 and the distribution G(Sn |H1) of this statistic with
validity of the competing hypothesis H1 (sample volume n = 10, 20, 100, 300). Obviously, the statistic
distribution G(Sn |H1) for n = 10, 20 intersect G(S |H0), which explains why the power 1 − β is lower
than α.

In the figure, the distribution G(S |H0) is shown only for n = 10. If n ≥ 20, the distributions G(Sn |H0)
are not visually different from G(S10 |H0) and practically coincide with the limiting distribution a1(s) of
the Cramer — von Mises — Smirnov test statistic when testing simple hypotheses.

The considered set of goodness-of-fit tests can be arranged by descending power relative to the competing
hypothesis H2 (without intersection of the distribution functions that correspond to H0 and H2)): It is
located in a different order:

Anderson—Darling � ZC Zhang � Cramer— von Mises —Smirnov �

� ZA Zhang ≈ ZK Zhang � Kolmogorovsuccχ2 Pearson � Kuiper � Watson.
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The same tests listed by the order of descending power relative to the competing hypothesis H3 (also with-
out intersection of the law distribution functions corresponding to H0 and H3)) are arranged approximately
in the same order:

Anderson— Darling � Cramer — von Mises — Smirnov � ZC Zhang �
� ZA Zhang � Kolmogorov � ZK Zhang � χ2 Pearson � Kuiper � Watson.

Note [15] that the Kuiper and Watson tests not known for being biased are greater in power as compared
to the Kolmogorov — von Mises — Smirnov tests in the case of an alternative case with intersection of the
distribution laws (e. g., the situation with H0 and H1)) and are essentially smaller in power in the case of
an alternative without intersection (the situation with H2 and H3)).

In general, the preference should be given to the Anderson — Darling and Zhang tests with statistics ZC
and ZA and to the Cramer — von Mises — Smirnov tests. However, it should be taken into account that
there might be a situation when some competing laws would not be distinguished by tests with small n
and α.

SPECIAL TESTS FOR UNIFORMITY

There are three groups in the subset of specific tests of uniformity. The test statistics of the first group
provide the use of the differences of successive values of the ordered series Ui − Ui− 1, where i = 1, (n + 1),
U0 = 0, Un + 1 = 1.

The second group includes the tests using the differences of estimates of order statistics obtained from
the analyzed sample and, for example, from the mathematical expectations of these order statistics.

The third group is the so-called entropy tests based on various entropy estimates.
The first group of tests using the difference of the elements of an ordered series include the Sher-

man [17, 18], Kimball [19], Moran 1 [20], Moran 2 [21], and Young [22] tests, as well as the Cressy tests with
expressions of the statistics S

(m)
n and L

(m)
n [15] clarified as compared to [23], the Pardo [24] tests, and the

Schwartz [25] tests.
The second group where the deviations of order statistics from their mathematical expectations are

considered (on medians, etc.) include the Hegazy — Green tests with statistics T1 and T2 [26], the Frosini [27],
Cheng — Spiring [28], Greenwood [29], Greenwood — Quesenberry — Miller [30] tests, as well as the
Neyman — Barton tests with statistics N2, N3, and N4 [31].

The third group consists of the Dudewics — van der Meulen entropy tests [32] and two versions in whose
statistics other entropy estimates are used [33].

In this work that is the development of [34, 35], we used statistical simulation methods [14] to study the
statistic distribution of all the above-mentioned tests and expand the tables of percentage points. We tested
how well the distribution of normalized statistics are described by the corresponding asymptotic laws (in
those cases where the literature had references to such results) and studied the test power relative to various
competing hypotheses, particularly H1, H2, and H3 [15]. Unfortunately, most of the considered tests (the
Sherman, Kimball, Moran 1, and Moran 2 tests; one of the Cressie tests; the Hegazy — Green, Frosini,
Young, Greenwood, Greenwood — Quesenberry — Miller, and Neyman — Barton tests) are biased relative
to the competing hypothesis H1.

Other practically general disadvantages of the most special tests are the dependence of the statistic
distribution on the sample volume n and the need to used the tables of critical values (percentage points).
The exceptions are the Neyman — Barton tests where the distributions of three statistics for n > 20 are well
approximated by the χ2

2-, χ2
3-, and χ2

4 distributions, as well as the Moran 2 and Young tests. However, the
approximations by the χ2 distribution and by the normal law of the corresponding versions of the Moran 2
test statistics are essentially different from the actual distributions of these versions, and the test itself has a
very low power relative to the competing hypotheses H1, H2, and H3. The normalized Young test statistic
on the contrary is well approximated by the standard normal law, but the test has such a low power that
recommending its usage would be unreasonable.

Expressions for the statistics of the considered specific tests of uniformity are shown in Table 1.
All the tests of uniformity in the columns of Table 2 are ordered by descending power relative to the

competing hypotheses H1, H2, and H3 (by the power 1− β manifested for n = 100 and for the significance
level α = 0.1)).

In the column with ordering by power relative to hypothesis H1, the tests that are obviously biased
for small n relative to hypothesis H1 are marked in bold-faced type. The Neyman — Barton tests with
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Table 1. Statistics of special tests for uniformity

No. Test Statistics

1 Sherman ωn = 1
2

n + 1∑
i = 1

∣∣∣∣Ui − Ui− 1 − 1
n+1

∣∣∣∣
2 Kimball A =

n + 1∑
i = 1

(
Ui − Ui− 1 − 1

n+1

)2

3 Moran 1, 2 B =
n + 1∑
i = 1

(Ui − Ui− 1)2; Mn = −
n + 1∑
i = 1

ln[(n + 1)(Ui − Ui− 1)]

4 Young M =
n∑

i = 1
min(Di, Di + 1), D1 = U1, Di = Ui − Ui− 1, Dn + 1 = 1− Un

5 Greenwood G = (n + 1)
n + 1∑
i = 1

(Ui − Ui− 1)2

6
Greenwood —
Quesenberry —

Miller

Q =
n + 1∑
i = 1

(Ui − Ui− 1)2 +
n∑

i = 1
(Ui + 1 − Ui)(Ui − Ui− 1)

7 Swartz A∗n = n
2

n∑
i = 1

(
Ui + 1−Ui− 1

2
− 1

n

)2

, U0 = −U1, Un + 1 = 2− Un

8 Pardo Em, n = 1
n

n∑
i = 1

2m
n(Ui + m−Ui−m)

9 Cressie 1, 2 S
(m)
n =

n + 1−m∑
i = 0

(
Ui + m − Ui − m

n+1

)2

; L
(m)
n = −

n + 1−m∑
i = 0

ln

[
n+1
m

(Ui + m − Ui)

]

10 Cheng —
Spiring

Wp =

[
(Un − U1) n+1

n−1

]2/
n∑

i = 1
(Ui − Ū)2

11 Hegazy —
Green T1, T ∗1

T1 = 1
n

n∑
i = 1

∣∣∣∣Ui − i
n+1

∣∣∣∣; T ∗1 = 1
n

n∑
i = 1

∣∣∣∣Ui − i−1
n−1

∣∣∣∣
12 Hegazy —

Green T2, T ∗2
T2 = 1

n

n∑
i = 1

(
Ui − i

n+1

)2

; T ∗2 = 1
n

n∑
i = 1

(
Ui − i−1

n−1

)2

13 Frosini Bn = 1√
n

n∑
i = 1

∣∣∣∣Ui − i−0.5
n

∣∣∣∣
14 Neyman —

Barton N2

N2 =
2∑

j = 1
V 2

j , Vj = 1√
n

n∑
i = 1

πj(Ui − 0.5), π1(y) = 2
√

3y, π2(y) =
√

5(6y2 − 0.5)

15 Neyman —
Barton N3

N3 =
3∑

j = 1
V 2

j , Vj = 1√
n

n∑
i = 1

πj(Ui − 0.5), π3(y) =
√

7(20y3 − 3y)

16 Neyman —
Barton N4

N4 =
4∑

j = 1
V 2

j , Vj = 1√
n

n∑
i = 1

πj(Ui − 0.5), π4(y) = 3(70y4 − 15y2 + 0.375)

17 Dudewics —
van der Meulen

H(m, n) = − 1
n

n∑
i = 1

ln

{
n

2m
(Ui + m − Ui−m)

}
, m — unit and m ≤ n/2;

if i + m ≥ n, then Ui + m = Un; if i−m ≤ 1, then Ui−m = U1

18 Entropy test
version 1

HY1 = − 1
n

n∑
i = 1

ln

(
Ui + m−Ui−m

F̂ (Ui + m)−F̂ (Ui−m)

)
,

F̂ (Ui) = n−1
n(n+1)

(
i + 1

n−1
+

Ui−Ui− 1
Ui + 1−Ui− 1

)
, i = 2, (n− 1),

F̂ (U1) = 1− F̂ (Un) = 1/(n + 1)

19 Entropy test
version 2

HY2 = −
n∑

i = 1
ln

(
Ui + m−Ui−m

F̂ (Ui + m)−F̂ (Ui−m)

)(
F̂ (Ui + m)−F̂ (Ui−m)

n∑
j = 1

(F̂ (Uj + m)−F̂ (Uj−m))

)
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Table 2. Order of uniformity tests by power

No. Relative to H1 1− β Relative to H2 1− β Relative to H3 1− β

1 Entropy test
version 2

0.883 Anderson —
Darling

0.648 Anderson —
Darling

0.526

2 Zhang ZA 0.850 Hegazy — Green T1 0.610 Hegazy — Green T1 0.522

3 Neyman —
Barton N2

0.837 Zhang ZC 0.606 Frosini 0.522

4 Cressie 2 0.820 Frosini 0.603 Hegazy — Green T ∗1 0.520

5 Zhang ZC 0.819 Hegazy — Green T2 0.602 Hegazy — Green T2 0.508

6 Dudewics —
van der Meulen

0.790 Neyman —
Barton N2

0.597
Cramer —

von Mises —
Smirnov

0.507

7 Entropy test
version 1

0.789 Cramer — von Mises —
Smirnov

0.595 Hegazy — Green T ∗2 0.506

8 Watson 0.779 Hegazy — Green T ∗1 0.595 Zhang ZC 0.463

9 Neyman —
Barton N3

0.766 ZK 0.590 Zhang ZA 0.459

10 Neyman —
Barton N4

0.739 Hegazy — Green T ∗2 0.585 Kolmogorov 0.450

11 Kuiper 0.736 Neyman —
Barton N3

0.577 Neyman —
Barton N2

0.447

12 Cheng — Spiring 0.722 Zhang ZA 0.574 Zhang ZK 0.438

13 Zhang ZK 0.617 Neyman —
Barton N4

0.557 Neyman —
Barton N3

0.416

14 χ2 Pearson 0.593 Kolmogorov 0.542 Neyman —
Barton N4

0.381

15 Swartz 0.583 Pardo 0.463 χ2 Pearson 0.374

16 Anderson —
Darling

0.505 χ2 Pearson 0.448 Pardo 0.291

17 Hegazy — Green T ∗
1 0.443 Kuiper 0.364 Dudewics —

van der Meulen
0.275

18 Hegazy — Green T ∗
2 0.409 Zhang ZA 0.356 Entropy test

version 1
0.275

19 Pardo 0.408
Entropy

test
version 1

0.328 Entropy test
version 2

0.267

20 Frosini 0.384 Dudewics —
van der Meulen

0.327 Watson 0.257
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Table 2 (cont.)

No. Relatively to H1 1− β Relatively to H2 1− β Relatively to H3 1− β

21 Cramer — von Mises —
Smirnov

0.358 Cressie 1 0.314 Kuiper 0.254

22 Hegazy — Green T1 0.322
Entropy

test
version 2

0.266 Cressie 2 0.226

23 Kolmogorov 0.322
Greenwood —
Quesenberry —

Miller

0.244 Cressie 1 0.218

24 Hegazy — Green T2 0.308 Schwartz 0.226 Schwartz 0.206

25
Greenwood —
Quesenberry —

Miller

0.290 Cressie 2 0.217
Greenwood —
Quesenberry —

Miller

0.186

26 Kimball 0.279 Sherman 0.204 Kimball 0.165

27 Moran 1 0.279 Kimball 0.201 Moran 1 0.165

28 Greenwood 0.279 Moran 1 0.201 Greenwood 0.165

29 Sherman 0.215 Greenwood 0.201 Sherman 0.154

30 Cressie 1 0.187 Moran 2 0.193 Moran 2 0.143

31 Moran 2 0.187 Cheng — Spiring 0.168 Cheng — Spiring 0.106

32 Young 0.115 Young 0.108 Young 0.104

statistics N2 and N3 are biased relative to H1 to a smaller extent. This disadvantage is not observed only
for some tests: the Kuiper — Watson test and the Dudewics — van der Meulen entropy test with its versions,
as well as the Cheng — Spiring, Swartz, Pardo, Cressie 2, and χ2 Pearson tests.

All modifications of the tests that use various estimates of entropy [32, 33] as statistics demonstrate a
high power relative to the competing hypothesis H1. At the same time, the estimates of power these tests
are more modest relative to hypotheses H2 and H3. Only these tests for small n manifest bias relative to
hypothesis H2. It should be noted that power of these tests and of the Cressie — Pardo tests depends on
the “window size” choice m [15].

The Neyman — Barton test with statistic N2 shows a high power with respect to H1 and comparatively
great results relative to H2 and H3.

A consistently good ability to distinguish between competing hypotheses and uniformity is demonstrated
by the Hegazy — Green and Frosini tests.

Low power is demonstrated by the tests where modules or squares of differences Ui − Ui− 1 of values of
successive order statistics (the Sherman, Kimball, Moran, Greenwood, and Greenwood — Quesenberry —
Miller tests).

The Cheng — Spiring test demonstrates comparatively high power relatively to H1, but it shows low
power relatively to H2 and H3. The power is especially low for all three considered hypotheses because of
the Young test [22], which indicates a very unsuccessful attempt to use the corresponding statistic in the
test for uniformity.

Based on the study of the properties of the set of tests used for uniformity, a manual is prepared [15].

CONCLUSION

If the hypothesis that a sample under analysis belongs to a certain distribution law is tested by developing
a set of special tests, then this set would probably include tests whose application is more preferable with
limited sample volumes due to obviously higher power as compared, for example, with general goodness-of-fit
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Table 3. Minimal sample volumes n, required to distinguish hypotheses H0 and Hi

with given probabilities of type I and II α = 0.1 and β = 0.1

No. Test
n

from H1 from H2 from H3

1 Anderson — Darling 200 210 295

2 Cramer — von Mises — Smirnov 274 245 315

3 Zhang ZC 127 240 353

4 Zhang ZA 120 253 355

5 Zhang ZK 180 250 390

6 Watson 145 455 730

7 Kuiper 156 410 595

8 Kolmogorov 335 275 370

9 χ2 Pearson 210 335 435

10 Neyman — Barton N2 122 235 350

11 Dudewics — van der Meulen 150 485 805

12 Hegazy — Green T1 277 235 300

13 Frosini 264 240 300

14 Pardo 280 375 830

15 Swartz 300 2600 4000

16 Sherman, Kimball, Moran 2 617 4350 6950

tests. In testing uniformity, this difference is not observed when it comes to nonparametric goodness-of-fit
tests: the Zhang tests with statistics ZA and ZC and the Anderson — Darling tests demonstrate very poor
results.

It follows from the analysis of the properties of the entire set of tests that can be used for hypotheses
of uniformity of a sample that the correct use of any single test for the formation of a reliable statistical
conclusion may often be insufficient. For greater objectivity of statistical conclusions, it is preferable to use
some number of tests having certain advantages. The use of not one, but a set of uniformity tests supported
by various measures of deviation of empirical distribution from theoretical distribution improves the quality
of statistical conclusions.

In the analysis of the measurement results, there might be a problem concerning the sample volume
sufficient for correctly using a certain test for a hypothesis. This problem can be solved only in terms
of probabilities of type I and II errors after clarifying the information about the competing hypothesis
(competing law). For example, for some of the tests considered in this paper and hypotheses H1, H2,
and H3, Table 3 shows sample volumes n required for a situation where the probability of the type II error
does not exceed α = 0.1 for the specified probability of the type I error β = 0.1.

Making a decision about the results of testing hypothesis H0 on the basis of the achieved significance level
is always more justified than in the case of comparing the obtained value of the statistic with a given critical
value derived from the corresponding table of percentage points. In the latter case, it remains unclear how
different is the true distribution to which the analyzed sample belongs (and which always remains unknown)
from uniformity.

Unfortunately, the distributions of the majority of special tests for uniformity are essentially dependent
on the sample volume, so it is necessary to rely on the tables of percentage points. A similar problem
arises with the use of the Zhang nonparametric goodness-of-fit tests with statistics ZA, ZC , and ZK whose
distributions depend on n.

What can be done to improve the quality of statistical conclusions? The use of computer data analysis
and the study of the unknown distribution of applied test statistics (for a given sample volume n) in real-
time testing (online) of a hypothesis [1, 16, 17, 36]. For example, one can interactively explore the unknown
distribution of the statistic of any test of uniformity that depends on the sample volume for the value of n
which corresponds to the sample under analysis and use the empirical distribution of the statistic to estimate
the achieved significance level.
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