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Abstract— Estimates are given of the power of the Kuiper and Watson goodness-of-fit tests and three
Zhang tests with the ZA, ZC , and ZK statistics with respect to some pairs of competing laws in testing
simple and composite hypotheses. The powers of these tests are compared with the powers of the
Kolmogorov, Cramer–von Mises–Smirnov, and Anderson–Darling tests. Statistic distribution models
and tables of percentage points are constructed which allow the Kuiper and Watson goodness-of-fit
tests to be used to test composite hypotheses about the goodness of fit of samples against various
parametric distribution laws. An interactive simulation method is proposed that allows constructing
and using distributions of test statistics in solving problems of statistical analysis.
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INTRODUCTION

The list of goodness-of-fit tests used in the statistical analysis of experimental results is limited, as a
rule, to Pearson’s χ2 test and two or three nonparametric tests: usually, the Kolmogorov, Cramer–von
Mises–Smirnov, and Anderson–Darling tests. Their applications are often accompanied by errors that lead
to incorrect inferences.

Using goodness-of-fit tests, one needs to distinguish between simple and composite hypotheses. A simple
hypothesis is of the form H0: F (x) = F (x, θ), where F (x, θ) is a known theoretical probability distribu-
tion function with a known scalar or vector parameter θ. In testing simple hypotheses, the nonparamet-
ric goodness-of-fit tests are distribution free, i.e., if the hypothesis to be tested is valid, the distributions
G(S |H0) of their statistics are independent of the law F (x, θ) against which the goodness of fit is tested.

In the case of testing composite hypotheses of the form H0: F (x) ∈ {F (x, θ), θ ∈ Θ}, where the estimate θ̂
of the scalar or vector distribution parameter F (x, θ) is calculated from the same sample, nonparametric
goodness-of-fit tests lose the distribution-free property. In testing of composite hypotheses, the conditional
distributions of the statistics G(S |H0) depend on several factors: type of the observed law F (x, θ) corre-
sponding to the valid tested hypothesis H0; estimated parameter type and number of estimated parameters;
in some cases, on a particular value of the parameter (for example, in the case of families of gamma and
beta distributions); parameter estimation method. The differences in the distributions of the same statistic
in testing simple and composite hypotheses are so significant that this fact cannot be neglected in any case.

In this study we had two objectives: (1) to draw attention to the Kuiper [1], Watson [2, 3], and Zhang [4–7]
tests, which, by virtue of objective reasons and the lack of evidence-based recommendations are unfortunately
little used in applied data analysis; (2) to solve the existing problems in the use of these and other tests for
testing composite hypotheses, and some of them for testing simple hypotheses.

We emphasize that the previously reported results on the classical Kuiper and Watson tests and the test
discussed in [4–7] are related only to testing simple hypotheses.
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Table 1. Upper percentage points of the distributions of the Kuiper and Watson test statistics
and their corresponding probabilities of the form P (S > Sα |H0) calculated in accordance
with the theoretical laws and from the results of statistical modeling

Percentage points
and distributions of statistics

α

0.15 0.10 0.05 0.025 0.01

Percentage points
of Kuiper statistics [10]

1.537 1.620 1.747 1.862 2.001

Distribution (2) 0.149945 0.099797 0.050075 0.025067 0.009994

Simulation result 0.149850 0.099636 0.050060 0.025006 0.009942

Distribution (5) 0.150283 0.100049 0.050030 0.024745 0.009503

Percentage points
of Watson statistic [13]

0.131 0.152 0.187 0.222 0.267

Distribution (7) 0.150602 0.099526 0.049882 0.024998 0.010283

Simulation result 0.150357 0.099479 0.049745 0.024865 0.010305

Distribution (9) 0.149243 0.098704 0.050171 0.025747 0.011149

KUIPER TEST

Kuiper [1] proposed an extended Kolmogorov test statistic for testing the hypothesis that a random
sample fits a law with a continuous distribution function F (x, θ). The statistic Vn for the test is given by

Vn = sup
−∞< x <∞

{Fn(x)− F (x, θ)} − inf
−∞< x <∞

{Fn(x)− F (x, θ)}

(here Fn(x) is an empirical distribution function) and is used in the form

Vn = D+
n + D−

n , (1)

where D+
n = max {i/n − F (xi, θ)}, D−

n = max {F (xi, θ) − (i − 1)/n}, i = 1, n, n is the sample size xi are
the elements of a variational series constructed from the sample (in increasing order).

A significant disadvantage of the test employing statistic (1) is the strong dependence of the Kuiper
statistic distribution G(Vn | H0) on the sample size n. Tables of percentage points for testing simple
hypotheses using the test statistic

√
nVn can be found in [8, 9]. As the limiting distribution G(

√
nVn |H0)

for the statistic
√

nVn [9], Kuiper [1] gives the following distribution function:

G(s |H0) = 1−
∞∑

m = 1

2(4m2s2 − 1)e−2m2s2 . (2)

For the modified statistic

V = Vn

(√
n + 0.155 +

0.24√
n

)
, (3)

whose distribution is less dependent on n than the distribution of
√

nVn, percentage points are presented
in [10] (shown in row 2 of Table 1). The dependence of the distribution of the statistic (3) on the sample
size can be neglected for n ≥ 20 since the deviation of the real distribution of the statistic from the limiting
distribution is insignificant and has little effect on the statistical inference.

In the Kuiper test, it is possible to use a statistic of the form

V mod
n =

√
n(D+

n + D−
n ) +

1
3
√

n
, (4)

where the idea of using the correction follows from the expression for the statistic of the Smirnov goodness-
of-fit test [11, p. 81]. The dependence of the distribution statistics (4) on the sample size is practically
negligible when n ≥ 30.
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Statistics (3) and (4) have the same limiting distributions. For small n, the difference between the
distributions of statistics (3) and (4) is rather large. However, for n ≥ 20 in the region of decision making (for
values of the statistic distribution functions G(V |H0) > 0.9 and G(V mod

n |H0) > 0.9), these distributions
are practically identical.

As a model of the limiting law, we can use the beta distribution of the third kind with density

f(x) =
θ
θ0
2

θ3B(θ0, θ1)
((x− θ4)/θ3)θ0− 1(1− (x− θ4)/θ3)θ1− 1

[1 + (θ2 − 1)((x− θ4)/θ3)]θ0 + θ1
(5)

(B(·) is the beta function) and the parameter vector θ = (7.8624, 7.6629, 2.6927, 2.6373, 0.495)T constructed
from the results of simulation of statistics (4). This model describes the distribution of statistic (4) in the
whole domain of definition and, along with the limiting distribution, can be used to calculate the achieved
significance level P{S > S∗ |H0} , i.e., the probability that in the case of validity of the tested hypothesis
H0, the statistic S of the test exceeds S∗, where S∗ is the value of the statistic calculated from the sample.

WATSON TEST

The Watson test statistic [2, 3] has the form

U2
n = n

∞∫
−∞

{
Fn(x)− F (x, θ)−

∞∫
−∞

(Fn(y)− F (y, θ))dF (y, θ)
}2

dF (x, θ)

and is used in the following form convenient for calculations:

U2
n =

n∑
i = 1

(
F (xi, θ)−

i− 1/2
n

)2
− n

( 1
n

n∑
i = 1

F (xi, θ)−
1
2

)2
+

1
12n

. (6)

In testing a simple hypothesis, the percentage points of the statistic U2
n can be found in [3, 12]. The

limiting distribution G(U2
n |H0) of the statistic U2

n is given in [2, 3] in the form

G(s |H0) = 1− 2
∞∑

m = 1

(−1)m− 1e−2m2π2s. (7)

Modifications of the Kuiper and Watson tests were considered in [13], and those of the Watson test in [14].
The asymptotic efficiency of the Watson test was studied in [15].

Percentage points for distributions of the modified statistics are given in [13]. In particular, the upper
percentage points for the modified Watson statistics in the form

U2∗
n = (U2

n − 0.1/n + 0.1/n2)(1 + 0.8/n) (8)

take the values [13] given in row 6 of Table 1. For sample size n ≥ 20, the difference between the distribution
of statistic (8) and the limiting distribution can be neglected.

Nearly the same values of the upper percentage points are used for the distribution of statistic (6). It
should be emphasized that the dependence of the distribution of statistic (6) on the sample size is insignifi-
cant.

The limiting distribution of statistic (6) for the entire domain of definition is well approximated by the
inverse Gaussian model with density

f(x) =
1
θ2

( θ0

2π((x− θ3)/θ2)3
)1/2

exp
(
− θ0((x− θ3)/θ2 − θ1)2

2θ2
1((x− θ3)/θ2)

)
(9)

and the vector of parameters θ = (0.2044, 0.08344, 1.0, 0.0)>, constructed from the simulation results of the
empirical distribution of statistic (6). In testing simple hypotheses using the Watson test, this distribution
and the limiting distribution can be used to calculate the achieved significance level.

Values of the probabilities P (S > Sα |H0) corresponding to the given percentage points (critical values)
for the Kuiper test [10] calculated using expression (2), the limiting law model (5), and the results of
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statistical simulation of values of statistic (4) N = 1.7 · 106 are presented in Table 1 for specified significance
levels α. The table also gives similar probabilities for the Watson test [13] calculated using relation (7),
the limiting law model (9), and the results of statistical modeling of the distribution of statistic (6). These
data allow one, on the one hand, judge the accuracy of modeling distributions of test statistics and, on the
other hand, to determine the possibility of constructing good models for unknown limiting (and unsaturated)
distributions of statistics that provide a fairly accurate evaluation of the achieved significance level.

ZHANG TESTS

Zhang [4–7] proposed nonparametric goodness-of-fit tests whose statistics have the following form:

ZK = max
1≤ i≤n

(
(i− 1/2) log

{ i− 1/2
nF (xi, θ)

}
+ (n− i + 1/2) log

[ n− i + 1/2
n{1− F (xi, θ)}

])
, (10)

ZA = −
n∑

i = 1

[ log{F (xi, θ)}
n− i + 1/2

+
log{1− F (xi, θ)}

i− 1/2

]
, (11)

ZC =
n∑

i = 1

[
log

{ [F (xi, θ)]−1 − 1
(n− 1/2)/(i− 3/4)− 1

}]2
. (12)

Our study [16] confirmed the validity of Zhang’s statement that the power of the tests is higher than
that of the Kolmogorov, Cramer–von Mises–Smirnov, and Anderson–Darling tests. However, tests with
statistics (10)–(12) cannot be recommended for wide use because of the strong dependence of distributions
of the statistics on the sample size n. This dependence complicates the use of the tests. Naturally, the
dependence on n holds in testing composite hypotheses.

ANALYSIS OF THE POWER OF TESTS

To investigate the distributions of statistics in the case of validity of the tested G(S |H0) and competing
G(S |H1) hypotheses and to estimate the power, we used the same approach being developed [17] based
on computer technologies and statistical modeling. The results of statistical modeling provided accuracy of
constructing statistic distributions G(S |Hi), i = 0, 1 of the order of ±10−3 with a confidence probability
of 0.9. This value determines the maximum length of the median confidence interval that covers the true
value of the distribution function at a point. To compare the powers of the investigated tests and other
goodness-of-fit tests, the results of the studies are demonstrated using two pairs of the same competing laws
as in [18–20].

The first pair consisted of the normal and logistic laws: the tested hypothesis H0 corresponded to the
normal law with density

f(x) =
1

θ0
√

2π
exp

{
− (x− θ1)2

2θ2
0

}
,

and the competing hypothesis H1 to the logistic law with density function

f(x) =
π

θ0
√

3
exp

{
− π(x− θ1)

θ0
√

3

}/[
1 + exp

{
− π(x− θ1)

θ0
√

3

}]2

and parameters θ0 = 1 and θ1 = 0. In the case of a simple hypothesis H0, the parameters of the normal law
have the same values. These two laws are close and difficult to distinguish using goodness-of-fit tests.

The second pair consisted of H0 — the Weibull distribution with density

f(x) =
θ0(x− θ2)θ0− 1

θ
θ0
1

exp
{
−

(x− θ2

θ1

)θ0
}
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and parameters θ0 = 2 and θ1 = 2, θ2 = 0 and H1 — the gamma distribution with density

f(x) =
1

θ1Γ(θ0)

(x− θ2

θ1

)θ0− 1
e−(x− θ2)/θ1

and parameters θ0 = 3.12154, θ1 = 0.557706, and θ2 = 0, for which the gamma distribution is closest to the
Weibull law.

The power was explored in testing simple and composite hypotheses H0 against the simple competing
hypotheses H1 for different values of the error probability of the first kind α and different sample sizes n.

As an example, Fig. 1 shows curves of the power of the tests versus sample size n in testing the simple
hypothesis H0 (normal distribution) against the hypothesis H1 (logistic distribution) for an error probability
of the 1st kind α = 0.1.

In this and subsequent figures, the following notation is used: curve 1 shows the dependence of the power
on sample size for the Zhang test with statistic ZC (12); 2 for the Zhang test with statistic ZA (11); 3 for
the Zhang test with statistic ZK (10); 4 for the Watson test with statistic U2

n (6); 5 for the Kuiper test
with statistic V mod

n (5). Figure 2 shows curves of the power in testing the simple hypothesis H0 (Weibull
distribution with parameters 2, 2, and 0) against the hypothesis H1 (gamma distribution with parameters
3.12154, 0.557706, and 0).
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In testing composite hypotheses, the parameters of the law were estimated using the maximum likelihood
method. Corresponding dependences for the same pairs of competing laws in testing composite hypotheses
are presented in Figs. 3 and 4.

Comparing the estimated the powers of the tests considered and the results for the Kolmogorov (K),
Cramer–von Mises–Smirnov (KMS), and Anderson–Darling (AD) tests given in [19, 20], we can order the
tests according to the power as follows:

— for testing simple hypotheses for the pair of the normal law and logistic law: ZC � ZA � ZK � U2
n �

Vn � AD � K � KMS;
— for testing simple hypotheses for the pair of the Weibull law and gamma distribution: ZC � ZA �

ZK � U2
n � Vn � AD � KMS � K;

— for testing composite hypotheses for the pair of the normal law and logistic law: ZA ≈ ZC � ZK �
AD � KMS � U2

n � Vn � K;
— for testing composite hypotheses for the pair of the Weibull law and gamma distribution: ZA � ZC �

AD � ZK � KMS � U2
n � Vn � K.

If we compare the obtained results with the power of χ2 type tests, it turns out that for testing simple
hypotheses [19], the Pearson χ2 test is the third provided that asymptotically optimal grouping is used [17]
and that the number of intervals is chosen so that the test has the maximum power [17, 21]. In the case
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Table 2. Distribution laws of random variables

Name
of law

Density
function f(x, θ)

Name
of law

Density
function f(x, θ)

Exponential 1
θ0

e−x/θ0 Laplace 1
2θ0

e−|x− θ1|/θ0

Seminormal 2
θ0
√

2π
e−x2/2θ2

0 Normal
(Gauss)

1
θ0
√

2π
e−(x− θ1)2/2θ2

0

Rayleigh x
θ2
0

e−x2/2θ2
0 Logarithmic

normal
1

xθ0
√

2π
e−(ln x− θ1)2/2θ2

0

Maxwell 2x2

θ3
0
√

2π
e−x2/2θ2

0 Cauchy θ0
π[θ2

0+(x−θ1)2]

Name
of law

Density function f(x, θ)

Logistic π
θ0
√

3
exp

{
− π(x−θ1)

θ0
√

3

}/[
1 + exp

{
− π(x−θ1)

θ0
√

3

}]2
Extreme

value (maximum)
1
θ0

exp

{
− x−θ1

θ0
− exp

(
− x−θ1

θ0

)}
Extreme

value (minimum)
1
θ0

exp

{
x−θ1

θ0
− exp

(
x−θ1

θ0

)}
Weibull θ0xθ0 − 1

θ
θ0
1

exp{−(x/θ1)θ0}

Sb-Johnson
(Sb(θ0, θ1, θ2, θ3))

θ1θ2
(x−θ3)(θ2+θ3−x)

exp

{
− 1

2

[
θ0 − θ1 ln x−θ3

θ2+θ3−x

]2}
Sl-Johnson

(Sl(θ0, θ1, θ2, θ3))

θ1
(x−θ3)

√
2π

exp

{
− 1

2

[
θ0 + θ1 ln x−θ3

θ2

]2}
Su-Johnson

(Su(θ0, θ1, θ2, θ3))

θ1√
2π
√

(x−θ3)2+θ2
2

exp

{
− 1

2

[
θ0 + θ1 ln

{
x−θ3

θ2
+

√(
x−θ3

θ2

)2

+ 1

}]2}

of testing composite hypotheses [20], the positions of the Pearson χ2 tests and the Nikulin–Rao–Robson χ2

tests [22–24] worsen: they are the seventh and eighth in the decreasing series of the power of tests. However,
we note that the powers of these tests can be maximized with respect to the given competing hypotheses
through the optimal choice of the boundaries and number of grouping intervals [17, 21].

USE OF THE KUIPER AND WATSON TESTS
IN TESTING COMPOSITE HYPOTHESES

As mentioned above for testing composite hypotheses of the form H0: F (x) ∈ {F (x, θ), θ ∈ Θ}, if
the estimate θ̂ of the scalar or vector distribution parameter F (x, θ) is calculated from the same sample,
nonparametric goodness-of-fit tests lose the distribution free property [25].

The problem of testing composite hypotheses using nonparametric goodness-of-fit tests has been solved
using different approaches [10, 13, 26–30]. In [31, 32], we employed numerical methods and statistical
modeling. The results obtained were used to develop recommendations for the use of the nonparametric
Kolmogorov, Cramer–von Mises–Smirnov, and Anderson–Darling tests [33, 34]. These results were later
refined and expanded [35–44] and are most fully presented in [17].

In this paper, we present tables of percentage points and distribution models for the Kuiper and Wat-
son test statistics that are recommended to be used in testing composite hypotheses for some parametric
distribution laws of random quantities widely used in applications.

Table 2 contains a list of distribution laws for which composite hypotheses can be tested using the
approximations constructed in this paper for the limiting distributions of nonparametric goodness-of-fit test
statistics.

The tables of percentage points and distribution models for the test statistic were constructed based
on simulated samples of statistics of size N = 1.7 · 106. For such N , the absolute value of the difference
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Table 3. Upper percentage points and limiting distribution models for the Kuiper test statistic when using MLEs

Name
of law

Estimated
parameter

Percentage points
Model

0.1 0.05 0.01

Exponential,
Raileygh,
Maxwell

Scale 1.540 1.661 1.905 B3(5.5932, 7.6149, 2.1484, 2.3961, 0.5630)

Seminormal Scale 1.543 1.664 1.907 B3(11.4707, 40.7237, 7.020, 20.3675, 0.3989)

Laplace
Scale 1.469 1.587 1.825 B3(7.8324, 8.3778, 2.6906, 2.4820, 0.4830)

Location 1.473 1.597 1.850 B3(9.1630, 6.6097, 4.0210, 2.4081, 0.4900)

Both parameters 1.278 1.365 1.541 B3(10.0376, 7.8452, 3.4694, 1.9586, 0.4756)

Normal,
lognormal

Scale 1.494 1.611 1.847 B3(6.3057, 8.1797, 2.3279, 2.4413, 0.5370)

Location 1.540 1.662 1.908 B3(5.5932, 7.6149, 2.1484, 2.3961, 0.5630)

Both parameters 1.402 1.505 1.709 B3(7.4917, 8.0016, 2.4595, 2.1431, 0.4937)

Cauchy
Scale

or location
1.435 1.560 1.815 B3(3.8425, 5.9345, 2.4284, 2.1927, 0.6150)

Both parameters 1.126 1.197 1.337 B3(9.4267, 7.5349, 3.2515, 1.5491, 0.4700)

Logistic

Scale 1.470 1.588 1.826 B3(9.7224, 7.8186, 3.2399, 2.4541, 0.4370)

Shifr 1.511 1.633 1.880 B3(9.1363, 6.9693, 3.4630, 2.3985, 0.4790)

Both parameters 1.337 1.432 1.622 B3(14.3460, 18.6137, 3.6366, 3.9560, 0.3525)

Extreme
values,
Weibull

Scale∗ 1.504 1.622 1.861 Sl(1.2459, 4.0123, 1.3063, 0.1873)

Location∗∗ 1.540 1.662 1.908 B3(5.5932, 7.6149, 2.1484, 2.3961, 0.5630)

Both parameters 1.411 1.516 1.726 Sl(1.4012, 5.0846, 1.4465,−0.0070)

Note: ∗ when estimating the shape parameter of the Weibull distribution, ∗∗ when estimating the scale parameter of
the Weibull distribution.

between the true law G(S |H0) of statistic distribution and the modeled empirical law GN (S |H0) does
not exceed 10−3. Values of the test statistics were calculated from samples of pseudorandom quantities
of size n = 103 generated in accordance with the observed law F (x, θ). In this situation, the distribu-
tion G(Sn |H0) practically coincides with the limiting distribution G(S |H0). In statistical analysis, the
models presented in this paper can be used starting from sample sizes n > 25.

The distribution G(S |H0) of the Kuiper and Watson test statistics are best approximated by the family
of beta distributions of the third kind B3(θ0, θ1, θ2, θ3, θ4), whose density function is defined by relation (5),
and the Sl-Johnson distribution family (Sl(θ0, θ1, θ2, θ3)) (Table 2).

The upper percentage points and the constructed limiting distribution models for the Kuiper test statistic
using maximum likelihood estimates (MLE) are presented in Table 3 for the following laws: exponential,
seminormal, Rayleigh, Maxwell, Laplace, normal, lognormal, Cauchy, logistic, extreme values (maximum and
minimum), and Weibull. For the same distribution laws, the upper percentage points and the constructed
distribution models for the Watson test statistic are given in Table 4.

The upper percentage points and models for the limiting distribution of statistics for testing composite
hypotheses for the Sb-Johnson distribution laws (using MLEs) are presented in Table 5, for the Sl-Johnson
laws in Table 6, and for Su-Johnson laws in Table 7.

The accuracy of the constructed statistic distribution models for testing composite hypotheses and the
possibility of using these models in statistical analysis may be demonstrated as follows.

Table 8 illustrates the results of constructing statistic distribution models for testing composite hypotheses
on goodness of fit of the analyzed sample to the logistic law with calculation of the MLEs of the location
and scale parameters of this law from the sample. The constructed models are given for the Kuiper test in
Table 3 and for the Watson test in Table 4.

The column F 1
N (v) in Table 8 presents estimates of the Kuiper statistic distribution function correspond-

ing to the values of statistic v and obtained from the simulated empirical statistic distribution for which the
model B3(14.3460, 18.6137, 3.6366, 3.9560, 0.3525) in Table 3 was constructed. The respective values of the
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Table 4. Upper percentage points and limiting distribution models for the Watson test statistic when using MLEs

Name
of law

Estimated
paremeter

Percentage points
Model

0.1 0.05 0.01

Exponential,
Raileygh,
Maxwell

Scale 0.129 0.159 0.230 B3(4.0419, 2.9119, 10.5931, 0.5000, 0.0096)

Seminormal Scale 0.131 0.161 0.232 B3(4.9988, 3.8721, 15.1781, 0.6900, 0.0059)

Laplace
Scale 0.115 0.144 0.214 B3(9.2136, 3.8610, 30.5491, 0.7010, 0.0015)

Location 0.111 0.139 0.209 B3(7.4479, 3.2650, 30.7784, 0.6227, 0.0063)

Both parameters 0.071 0.084 0.114 B3(9.0116, 5.3554, 17.3201, 0.3908, 0.0038)

Normal,
Logarithmic

Normal

Scale 0.122 0.151 0.221 B3(8.8122, 3.7536, 29.8074, 0.7171, 0.0019)

Location 0.127 0.157 0.228 B3(3.6769, 4.4438, 9.8994, 0.6805, 0.0082)

Both parameters 0.096 0.116 0.164 B3(3.5230, 4.4077, 9.2281, 0.4785, 0.0104)

Cauchy
Scale

or location
0.105 0.133 0.203 Sl(2.7778, 1.5065, 0.2690, 0.0049)

Both parameters 0.052 0.061 0.081 B3(8.3558, 4.8650, 12.0768, 0.1930, 0.0049)

Logistic

Scale 0.115 0.144 0.214 B3(9.2136, 3.8610, 30.5491, 0.7010, 0.0015)

Location 0.119 0.148 0.218 B3(3.9730, 3.9414, 13.2655, 0.6637, 0.0090)

Both parameters 0.081 0.098 0.135 B3(4.2608, 4.6784, 9.3054, 0.3810, 0.0084)

Extreme
values,
Weibull

Scale∗ 0.122 0.151 0.221 B3(8.8122, 3.7536, 29.8074, 0.7171, 0.0019)

Location∗∗ 0.129 0.159 0.230 B3(4.9988, 3.8721, 15.1781, 0.6792, 0.0061)

Both parameters 0.097 0.118 0.165 Sl(1.2863, 1.6736, 0.0927, 0.0052)

Note: ∗ when estimating the shape parameter of the Weibull distribution, ∗∗ when estimating the scale parameter of
the Weibull distribution.

Table 5. Upper percentage points and limiting distribution models for nonparametric goodness-of-fit test statistics
in the case of testing hypotheses about Sb-Johnson distributions using MLEs

Estimated
paremeter

Percentage points
Model

0.1 0.05 0.01

for the Kuiper test

θ0 1.540 1.662 1.908 B3(5.5932, 7.6149, 2.1484, 2.3961, 0.5630)

θ1 1.494 1.611 1.847 B3(6.3057, 8.1797, 2.3279, 2.4413, 0.5370)

θ0, θ1 1.402 1.505 1.709 B3(7.4917, 8.0016, 2.4595, 2.1431, 0.4937)

for the Watson test

θ0 0.127 0.157 0.228 B3(3.6769, 4.4438, 9.8994, 0.6805, 0.0082)

θ1 0.122 0.151 0.221 B3(8.8122, 3.7536, 29.8074, 0.7171, 0.0019)

θ0, θ1 0.096 0.116 0.164 B3(3.5230, 4.4077, 9.2281, 0.4785, 0.0104)

statistic distribution function calculated for this model are given in the column F (v). The column F 2
N (v)

contains estimates of the distribution function obtained from the control (newly generated) sample of statis-
tics.

Similarly, the corresponding estimates for the distribution function of the Watson test statistics in con-
structing the model B3(4.2608, 4.6784, 9.3054, 0.3810, 0.0084) from Table 4 are shown in the columns F 1

N (u2
n),

F (u2
n), and F 2

N (u2
n) in Table 8.

As seen from Table 8, for the Kuiper test, max |F 1
N (v)−F 2

N (v)| = 0.000522, which fits in a 90% confidence
interval, whose maximum value for N = 1.7 · 106 does not exceed 0.002. The deviations of the empirical
distributions from the constructed model are max |F 1

N (v) − F (v)| = 0.001509 and max |F (v) − F 2
N (v)| =

0.001579. Similarly, for the Watson test, we have max |F 1
N (u2

n) − F 2
N (u2

n)| = 0.000537, max |F 1
N (u2

n) −
F (u2

n)| = 0.000932, and max |F (u2
n)− F 2

N (u2
n)| = 0.001323.
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Table 6. Upper percentage points and limiting distribution models for nonparametric goodness-of-fit test
statistics in the case of testing hypotheses about Sl-Johnson distributions using MLEs

Estimated
parameter

Percentage points
Model

0.1 0.05 0.01

for the Kuiper test

θ0 1.540 1.662 1.908 B3(5.5932, 7.6149, 2.1484, 2.3961, 0.5630)

θ1 1.512 1.631 1.872 B3(6.7423, 8.0549, 2.4935, 2.4976, 0.5250)

θ2 1.540 1.662 1.908 B3(5.5932, 7.6149, 2.1484, 2.3961, 0.5630)

θ0, θ1 1.402 1.505 1.709 B3(7.4917, 8.0016, 2.4595, 2.1431, 0.4937)

θ0, θ2 1.540 1.662 1.908 B3(5.5932, 7.6149, 2.1484, 2.3961, 0.5630)

θ1, θ2 1.402 1.505 1.709 B3(7.4917, 8.0016, 2.4595, 2.1431, 0.4937)

θ0, θ1, θ2 1.402 1.505 1.709 B3(7.4917, 8.0016, 2.4595, 2.1431, 0.4937)

for the Watson test

θ0 0.127 0.157 0.228 B3(3.6769, 4.4438, 9.8994, 0.6805, 0.0082)

θ1 0.124 0.153 0.223 B3(3.4122, 4.9262, 9.6902, 0.7643, 0.0087)

θ2 0.127 0.157 0.228 B3(3.6769, 4.4438, 9.8994, 0.6805, 0.0082)

θ0, θ1 0.096 0.116 0.164 B3(3.5230, 4.4077, 9.2281, 0.4785, 0.0104)

θ0, θ2 0.127 0.157 0.228 B3(3.6769, 4.4438, 9.8994, 0.6805, 0.0082)

θ1, θ2 0.096 0.116 0.164 B3(3.5230, 4.4077, 9.2281, 0.4785, 0.0104)

θ0, θ1, θ2 0.096 0.116 0.164 B3(3.5230, 4.4077, 9.2281, 0.4785, 0.0104)

INTERACTIVE MODE OF STUDYING STATISTIC DISTRIBUTIONS

The major factor hindering the use of nonparametric goodness-of-fit tests to test composite hypotheses
for a wide range of possible parametric distribution laws in various applications for describing the observed
random values (measurement errors) is the dependence of distributions of test statistics on particular values
of the shape parameter (or parameters) of the law corresponding to the hypothesis being tested (in the case
of families of gamma and beta distributions, generalized Weibull, inverse Gaussian, etc.). As a rule, this
refers to laws that are most promising in various applications, in the analysis of the survival and reliability
of complex products and systems.

Since estimates of the parameters become known only in the process of analysis, the statistic distribution
required to test the hypothesis cannot be found in advance (before calculating estimates from the analyzed
sample!). In the case of tests with statistics (10)–(12), the problem is exacerbated by the dependence of the
statistic distributions on the sample size. It follows that the distributions of the statistics of the tests used
should be found interactively during ongoing statistical analysis [45] and then used in the inference from the
results of the test of the composite hypothesis.

Implementation of this interactive mode requires advanced software that allows (as in [46]) parallelizing
the simulation processes and invoking available computing resources. In the case of parallelizing, the time
of constructing the distribution GN (Sn |H0) of the test statistic (with the required accuracy) necessary for
testing the hypothesis and determining the achieved significance level P{Sn ≥ S∗}, where S∗ is the value of
the statistic calculated from the sample is negligible compared to the time required for complete solution of
the problem of statistical analysis.

In [46], the interactive mode of studying statistic distributions was implemented for the following nonpara-
metric goodness-of-fit tests: Kolmogorov, Cramer–von Mises–Smirnov, Anderson–Darling, Kuiper, Watson,
and Zhang (three tests). In this case, different methods can be used to estimate the parameters.

In survival and reliability analysis of complex systems, samples are usually characterized by the presence
of censored and randomly (repeatedly) censored observations. The adequacy of the reliability functions
constructed are also verified using goodness-of-fit tests, but, in this case, they are applied to the generated
samples of residues. In the case of censored samples, the distributions of the statistics of the employed
modified nonparametric goodness-of-fit tests depend, in addition, on the distribution laws of the censoring
moments and the degree of censoring of the samples [47–49]. Under such conditions, the interactive mode
of research is particularly needed.

The following examples demonstrates the accuracy the determination of the achieved significance level
depending on the sample size N of the interactively modeled empirical distribution of the statistic [46].
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Table 7. Upper percentage points and limiting distribution models for nonparametric goodness-of-fit test
statistics in the case of testing hypotheses about Su-Johnson distributions using MLEs

Estimated
parameter

Percentage points
Model

0.1 0.05 0.01

for the Kuiper test

θ0 1.540 1.662 1.908 B3(5.5932, 7.6149, 2.1484, 2.3961, 0.5630)

θ1 1.512 1.631 1.872 B3(6.7676, 8.3605, 2.3501, 2.4976, 0.5142)

θ2 1.491 1.612 1.857 B3(7.5884, 8.1397, 2.6781, 2.4982, 0.4882)

θ3 1.517 1.638 1.885 B3(8.1449, 7.2651, 3.0338, 2.4418, 0.4880)

θ0, θ1 1.402 1.505 1.709 B3(8.1449, 7.2650, 3.0338, 2.1431, 0.5015)

θ0, θ2 1.393 1.496 1.703 B3(7.5234, 7.3134, 2.7694, 2.1076, 0.5035)

θ0, θ3 1.390 1.496 1.713 B3(8.0187, 7.7542, 2.7862, 2.1751, 0.4800)

θ1, θ2 1.414 1.525 1.749 B3(8.6702, 7.5387, 2.9284, 2.2036, 0.4600)

θ1, θ3 1.375 1.475 1.675 B3(8.6702, 7.5387, 2.9284, 2.0887, 0.4740)

θ2, θ3 1.350 1.447 1.640 B3(9.0132, 7.9999, 2.8585, 2.0644, 0.4635)

θ0, θ1, θ2 1.324 1.422 1.621 B3(10.7806, 8.4043, 3.2432, 2.1461, 0.4150)

θ0, θ1, θ3 1.333 1.431 1.629 B3(10.3455, 8.0495, 3.5687, 2.1993, 0.4463)

θ0, θ2, θ3 1.296 1.388 1.575 B3(10.3223, 7.7893, 3.3393, 2.0021, 0.4358)

θ1, θ2, θ3 1.299 1.394 1.584 B3(10.5957, 8.2600, 3.2334, 2.0676, 0.4194)

θ0, θ1, θ2, θ3 1.235 1.321 1.494 B3(9.9689, 7.3418, 3.4037, 1.8225, 0.4438)

for the Watson test

θ0 0.127 0.157 0.228 B3(3.6769, 4.4438, 9.8994, 0.6805, 0.0082)

θ1 0.124 0.153 0.223 B3(3.4122, 4.9262, 9.6902, 0.7643, 0.0087)

θ2 0.117 0.146 0.215 B3(6.0296, 3.7175, 22.6978, 0.7115, 0.0057)

θ3 0.121 0.150 0.220 B3(7.4154, 3.9208, 22.4649, 0.6800, 0.0022)

θ0, θ1 0.096 0.116 0.164 B3(3.5230, 4.4077, 9.2281, 0.4785, 0.0104)

θ0, θ2 0.093 0.114 0.161 B3(4.0651, 4.8643, 9.5614, 0.4903, 0.0078)

θ0, θ3 0.092 0.113 0.162 B3(4.4170, 4.9456, 10.4292, 0.5005, 0.0067)

θ1, θ2 0.099 0.123 0.181 B3(5.5181, 4.1815, 16.0852, 0.5478, 0.0055)

θ1, θ3 0.089 0.108 0.151 B3(5.7461, 4.4051, 13.9768, 0.4528, 0.0060)

θ2, θ3 0.084 0.101 0.141 B3(5.9952, 4.3409, 13.8757, 0.4020, 0.0060)

θ0, θ1, θ2 0.077 0.093 0.131 B3(5.5809, 4.9570, 14.1052, 0.4540, 0.0060)

θ0, θ1, θ3 0.080 0.097 0.137 B3(5.8959, 4.4478, 14.5923, 0.4132, 0.0060)

θ0, θ2, θ3 0.072 0.087 0.121 B3(6.1780, 4.6712, 14.5568, 0.3791, 0.0060)

θ1, θ2, θ3 0.072 0.087 0.121 B3(6.1780, 4.6712, 14.5568, 0.3791, 0.0060)

θ0, θ1, θ2, θ3 0.062 0.074 0.101 B3(7.3816, 4.4215, 14.1896, 0.2616, 0.0053)

Example. It is required to test the composite hypothesis that the following sample of size n = 100 fits
an inverse Gaussian distribution with density (9):

0.945 1.040 0.239 0.382 0.398 0.946 1.248 1.437 0.286 0.987
2.009 0.319 0.498 0.694 0.340 1.289 0.316 1.839 0.432 0.705
0.371 0.668 0.421 1.267 0.466 0.311 0.466 0.967 1.031 0.477
0.322 1.656 1.745 0.786 0.253 1.260 0.145 3.032 0.329 0.645
0.374 0.236 2.081 1.198 0.692 0.599 0.811 0.274 1.311 0.534
1.048 1.411 1.052 1.051 4.682 0.111 1.201 0.375 0.373 3.694
0.426 0.675 3.150 0.424 1.422 3.058 1.579 0.436 1.167 0.445
0.463 0.759 1.598 2.270 0.884 0.448 0.858 0.310 0.431 0.919
0.796 0.415 0.143 0.805 0.827 0.161 8.028 0.149 2.396 2.514
1.027 0.775 0.240 2.745 0.885 0.672 0.810 0.144 0.125 1.621

The location parameter θ3 = 0 is assumed to be given.
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Table 8. Distribution functions of the Kuiper and Watson test statistics in testing goodness of fit

to the logistic law for the case of calculation of MLEs for two parameters of the law

For the Kuiper test For the Watson test

v F 1
N (v) F (v) F 2

N (v) u2
n F 1

N (u2
n) F (u2

n) F 2
N (u2

n)

0.6 0.000869 0.000987 0.000848 0.012 0.001923 0.001182 0.001945

0.7 0.015031 0.015772 0.015026 0.024 0.120052 0.120838 0.119515

0.8 0.081186 0.081282 0.080664 0.036 0.376606 0.375904 0.376442

0.9 0.224404 0.223060 0.224009 0.048 0.602155 0.601577 0.601897

1.0 0.417929 0.417090 0.417482 0.060 0.755732 0.755849 0.755466

1.1 0.610865 0.611452 0.610709 0.072 0.851977 0.852258 0.851492

1.2 0.765689 0.767198 0.765619 0.084 0.910636 0.910653 0.910282

1.3 0.872154 0.872875 0.871804 0.096 0.946156 0.945746 0.946005

1.4 0.936271 0.935934 0.935922 0.108 0.967708 0.966874 0.967672

1.5 0.970832 0.969894 0.970669 0.120 0.980601 0.979669 0.980678

1.6 0.987655 0.986702 0.987742 0.132 0.988400 0.987471 0.988269

1.7 0.995212 0.994446 0.995231 0.144 0.993021 0.992259 0.993041

1.8 0.998289 0.997797 0.998248 0.156 0.995797 0.995213 0.995842

1.9 0.999419 0.999168 0.999416 0.168 0.997516 0.997044 0.997457

2.0 0.999818 0.999701 0.999798 0.180 0.998483 0.998181 0.998442

Table 9. Achieved significance levels for goodness-of-fit tests for different N

Values of test statistics N = 103 N = 104 N = 105 N = 106

V mod
n = 1.1113 0.479 0.492 0.493 0.492

U2
n = 0.05200 0.467 0.479 0.483 0.482

ZA = 3.3043 0.661 0.681 0.679 0.678

ZC = 4.7975 0.751 0.776 0.777 0.776

ZK = 1.4164 0.263 0.278 0.272 0.270

K = 0.5919 0.643 0.659 0.662 0.662

KMS = 0.05387 0.540 0.557 0.560 0.561

AD = 0.3514 0.529 0.549 0.548 0.547

The shape parameters θ0 and θ1 and the scale parameter θ2 are estimated from the sample. The MLEs
of the parameters found from this sample are θ̂0 = 0.7481, θ̂1 = 0.7808, and θ̂2 = 1.3202. The distribution
of the statistics of all the nonparametric goodness-of-fit tests in this case depend on the values of the shape
parameters θ0 and θ1 [40–42], do not depend on the value of the scale parameter θ2, and must be found for
the values θ0 = 0.7481 and θ1 = 0.7808.

The values S∗i of the Kuiper, Watson, Zhang, Kolmogorov, Cramer–von Mises–Smirnov, and Anderson–
Darling test statistics calculated from the sample and the achieved significance levels corresponding to these
values P{S ≥ S∗i |H0} (p-value) obtained with different modeling accuracy (for different size N of the
simulated samples of statistics) are shown in Table 9.

CONCLUSIONS

The study show that in testing simple hypotheses, the Kuiper and Watson goodness-of-fit tests have an
advantage in power over the Kolmogorov, Cramer–von Mises–Smirnov, and Anderson–Darling tests. use of
these tests for simple hypothesis involves no difficulties.

In testing composite hypotheses, the Kuiper and Watson tests lose the available advantage in power.
However, this does not imply rejection of the use of these tests since the larger the number of tests using
various measures of deviation of the empirical distribution from the theoretical distribution, the higher the
quality of statistical inferences. The statistic distribution models and tables of percentage points constructed
in this work allow the Kuiper and Watson tests to be correctly used to test composite hypotheses for a number
of parametric models of distribution laws (in the case of using MLEs).
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The Zhang tests with statistics ZC and ZA have an undeniable advantage in power over all others. This
is especially noticeable in testing simple hypotheses. Some difficulties in using the tests associated with
a significant dependence of the statistic distributions on the sample size are eliminated due to the interactive
mode.

Due to the interactive mode of studying statistic distributions [46], the Kolmogorov, Cramer–von Mises–
Smirnov, Anderson–Darling, Kuiper, Watson, and Zhang goodness-of-fit tests (with statistics ZC , ZA,
and ZK) can also be correctly used in the cases where the distribution of the employed test statistic corre-
sponding to the validity of the composite hypothesis H0 is unknown by the time of test of this hypothesis H0.
For the Zhang tests, this mode also provides testing of simple hypotheses for arbitrary sample sizes.

This work was supported by the Ministry of Education and Science (Grant No. 8.1274.2011) and the
Federal target program ”Scientific and scientific-pedagogical personnel of innovative Russia ”(agreement
No. 14.V37.21.0860).
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