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Abstract —The questions of research of the distribution laws of one-
dimensional functions of a set of independent random variables are
considered. The subsystem that allow for implementing the
imitation modeling of different functions of a set of independent
random variables and investigating these distribution laws is
implemented. System capabilities illustrated the efficiency of this
method is demonstrated in set of examples.

Index terms — function of random variables, distribution function of
random variables, simulation, program system.

I. INTRODUCTION

appear substantially more than the proposed solution in
classical mathematic statistic.

The problem of detection the distribution law of function of
random variable is one of widely sought. The solution of this
problem with application of classical method represents time-
consuming process, but it could find a solution in analytic form
in exceptional cases. The various distribution laws and different
complexity of the function of random variable complicates the
problem.

Researchers encountered very often with the need to construct
the distribution function of random variables in the problems of
indirect measurement error analysis when the measured value Y
is a function of random variables Y =¢(X,,X,,....,X,). The

determination of the distribution law of Y under known
distribution laws of random variables X, is possible by analytical

In practice of statistical analysis the problem statements

method in analytical form in exceptional cases. The use of the
linearization functions @(-) and the construction of approximate

solutions, as usually, suffer from serious inaccuracies.
We can consider the application of statistical modeling as real
escape from deadlock under searching the distribution law F'(y).

The investigation of distribution F(y) in depend on distribution
laws F(x,) by the methods of statistic modeling with corre-

sponding program support doesn’t generate the fundamental
difficulties [1-3].

One of aims of present work is development of software pack-
age allowing to simulate the empirical distribution laws for any
functions of random variables distributed by different laws in
system ISW[4], with further research.

We solve the next tasks consistently to achieve this problem:

e the analysis of methods and approach used for simulation

of pseudorandom variables in method of statistic test;

e the modeling of distribution laws of one-dimensional

function of random variables;

e debugging syntactic and semantic analyzers of input

expressions;

e the research of distributions received in result of simula-

tion.
The methods of statistical modeling, probability theory, mathe-
matic statistic is used under performance of work.
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Also the aim of this paper is concluded in demonstration of
opportunities of simulation system for investigating of distribu-
tion laws of functions of random variables. Considered examples
related with known results demonstrate the change of distribution
laws in depend on distribution laws of the arguments.

In this paper, examples have been studied by the method of
statistical simulations. The number of experiments carried out for
statistical modeling is usually assumed equal to N =1.66x10°in
the study of the distributions. One the one hand, such number of
experiments allows tracing the qualitative picture of distributions
in depend on various factors. In the other hand, this number of
experiments provides acceptable accuracy of unknown probabili-
ties.

II. PROBLEM DEFINITION

Quite frequently solved problem in metrology is problem of
definition of probability characteristics of quantity ¥, which isn’t
available directly for measurement, on base of quantities
X,,X,,....,X, available for multiple measurements. Suppose that

Y=¢(X,X,,..X,)

where @(-) — some known function (or in vector form

Y =¢)()_( )). Suppose that distribution law of vector X or

distribution laws X, X,,..., X, (or distribution law of error

measurements) in the case of independence of its components are
known or can be construct based on results of statistic analysis.

The function Y =(0()_( ) can be the result of functioning of

some information measuring system.

X € fi(x)

e =9
Y=o(X,,n X)) LT

—»

X, e f.(x,)

The classical approach of determination the probability distri-
bution law from set of random variables suggests that joint

density f(xl,xz,...,xk)
X, X,,....X, is known.
Let be X:Q— R" is random variable and g:R" — R" is

of a set of random variables

continuously differentiable function such as J, o (x) #0, Vxe R"

, Where J, o (x) is jacobian function g in point x . Then random

variable absolutely continuous too and it density has form:

£ 0= fc (g OV )
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However analytical decision with using the classical approach

can be finding only for some special cases of Y =(p()_() and

F (x5, %e00 X, )

In this paper, the various functions of a set of random variables
satisfying to the different distribution laws are considered. The
main method of distribution definition of interested random
variable Y is statistical method, which based on Monte-Carlo
method [2]. The subsystem of simulation of function of random
variables is implemented in the program ISW[4].

III. APPLICATIONS

Some examples demonstrated the opportunity and accuracy
research of the behavior of distribution function law of random
variable are considered below.

We used different goodness-of-fit tests for testing that model-
ing empirical distribution F(y) is theoretic law. However, tables

contain the results of use only for xz Pearson test, Kolmogorov

test, o> Cramer—Mises—Smirnov (CMS) test and Q? Anderson-
Darling (AD) test. The significance level oo =0.01 is used in all
considered examples.

At the start, we consider a few examples of simulation of
functions of one random variable.

Example 1. ¥ = X", where XeU(0,1). In this case theoretic

law describing distribution Y is beta distribution of I type with
shape parameters equals 1/n and 1. Table 1 contains p ..,

under goodness-of-fit testing of empirical distributions Fy (y)
obtained in result of simulations with corresponding beta-
distribution.

TABLE I
THE RESULTS OF GOODNESS-OF-FIT TESTING THE QUANTITY

Y = X" WITH BETA-DISTRIBUTION

n Y ¥ Pearson o CMS
0.1 B(10.1) 0.493 0.880
0.2 B(5.1) 0.426 0.089
0.5 B(2.1) 0.494 0.291
2 B(0.5.1) 0.807 0.803
3 B(0.333,1) 0.668 0.789
5 B(0.2,1) 0.422 0.614
n Y Kolmogorov Q? AD
0.1 B(10.1) 0.837 0.820
0.2 B(5.1) 0.072 0.098
0.5 B(2.1) 0.395 0.313
2 B(0.5,1) 0.892 0.819
3 | B(0.333,1) 0.899 0.796

Example 2. Now we verify the property of mirror-image
symmetry for beta distribution. If Xe B(k,n), then
Y=(1-X)eB(n k), where n and k- shape parameters. The
results of testing that F,(y) is B(n,k)are demonstrated in table
2.

TABLE I

THE RESULTS OF GOODNESS-OF-FIT TESTING THE QUANTITY Y
WITH CORRESPONDING BETA-DISTRIBUTION

X Y X’ Pearson W CMS
B(0.8.1) B(1,0.8) 0.493 0.880
B(5.3) B(@3.5) 0.886 0.914
B(10,25) B(25,10) 0.234 0.458

X Y Kolmogorov Q’ AD
B(0.8,1) B(1,0.8) 0.837 0.820
B(5.3) B(@3.5) 0.938 0.887
B(10,25) B(25,10) 0.702 0.435

After analyzing the previous two examples, we obtain the
following relationship between the uniform distribution and beta-
distribution of I type.

Example 3. Y =1-X", where XeU(0,1). Theoretic law
describing distribution Y is beta-distribution with parameters of
form equals 1 and 1/7. Table 3 includes the quantities of p,, ;...
under goodness-of-fit testing of modeling distibutions Fy ()
with corresponding beta-distribution.

TABLE III
THE RESULTS OF GOODNESS-OF-FIT TESTING THE QUANTITY

Y =1- X" WITH BETA-DISTRIBUTION

n Y X’ Pearson o CMS
0.1 B(1,10) 0.181 0.535
0.2 B(1.5) 0.942 0.998
0.5 B(1,2) 0.604 0.873
2 B(1,0.5) 0.651 0.661
3 | B(1,0.333) 0.588 0.885
5 B(1,0.2) 0.653 0.652
n Y Kolmogorov Q? AD
0.1 B(1.10) 0.590 0.651
0.2 B(1.5) 0.999 0.986
0.5 B(1,2) 0.869 0.938
2 B(1,0.5) 0.495 0.642
3 | B(1,0.333) 0.758 0.811

Example 4. Y =|X - |/ o, where X € Laplace(i, o). Theo-

retic law describing distribution Y is standard exponentional
distribution. The values of p, .. obtained under goodness-of-fit

testing of modeling distribution Fj,(y) with exponential
distribution law are contained in Table 4.
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TABLE IV

THE RESULTS OF GOODNESS-OF-FIT TESTING THE QUANTITY Y
WITH STANDART EXPONENTIAL DISTRIBUTION

Random variable % Pearson o CMS
|Laplace(0,1) 0.731 0.883
|Laplace(2,3) —2| /3 0.749 0.488
|Laplace(3,5)-3|/ 5 0.973 0.845
|Laplace(10,7)-10|/7 0.103 0.266

Random variable Kolmogorov Q* AD
|Laplace(0,l) 0.925 0.907
|Laplace(2,3) —2| /3 0.559 0.639
|Laplace(3,5) —3| /5 0.828 0.820
|Laplace(20,10)—20|/10 0.219 0.349

-X

Example 5. Y=,u—0'logle—_X, rae X e Exp(0,1). Theo-
—e
retic law describing distribution Y is logistic distribution with
shift parameter g and scale parameter o . Table 5 shown the
values of p, ... under goodness-of-fit testing Fj (y) with
logistic distribution law.

TABLE V

THE RESULTS OF GOODNESS-OF-FIT TESTING THE QUANTITY Y
WITH LOGISTIC DISTRIBUTION

M o Y % Pearson ® CMS
0 1 Log(0,1) 0.786 0.880
-1 | 05 | Log(-1,0.5) 0.292 0.395
5 3 Log(5,3) 0.528 0.521
10 | 05 | Log(10,0.5) 0.641 0.539
25| 50 | Log(2.5,50) 0.973 0.933
Y2 A Y Kolmogorov Q> AD
0 1 Log(0,1) 0.837 0.820
-1 | 05 | Log(-1,0.5) 0.541 0.358
5 3 Log(5,3) 0.471 0.657
10 | 05 | Log(10,0.5) 0.764 0.512
25| 50 | Log(2.5,50) 0.956 0.914

Now we consider a few examples with function from two
random normal distributing variables.
Example 6. Let be Y=X/X,,
X,eN©O.0,) are
distribution ¥V is Cauchy distribution with null shift parameter.

Received results of goodness-of-fit testing of empirical distribu-
tion Fy () of quantity ¥ with

where X, e N(0,0,)and

independent. Theoretic law describing

TABLE VI
THE RESULTS OF GOODNESS-OF-FIT TESTING THE QUANTITY

Y =X,/ X, WITH CAUCHY DISTRIBUTION

X, X, Y x* Pearson col\)/;s
N(0,1) N(0,1) C(0.1) 0.884 0.841
N(0.1) N(0.2) €(0,0.5) 0.804 0.962
N(0,2) N(0.1) €(0,2) 0.878 0.638
N(0,3) N(0,7) | €(0,0.428) 0.828 0.829

N(0.1.5) | N(010) | C(0.0.15) 0.386 0.162

N (0,10) N(0,2) C(0.5) 0.659 0.966

N(0,1) N(0,20) | €(0,0.05) 0.980 0.920
TABLE VI(CONTINUED)

Y Y Y Kolmogo 102 ap
N(0,1) N(0,1) C(0,1) 0.828 0.660
N(0,1) N(0,2) €(0,0.5) 0.982 0.142
N(0,2) N(0,1) €(0,2) 0.537 0.706
N(0,3) N(0,7) | €(0,0.428) 0.804 0.902

N(0.1.5) | N(0,10) | C(0.0.15) 0.235 0.202
N(0.10) | N(0,2) c(0.3) 0.974 0.965
N(0,1) | N(0,20) | C(0.0.05) 0.811 0.950

Values of p, .. for all tests indicate very well goodness of
obtained in result of empirical distribution simulation with
Cauchy distribution.

Example 7. Y =X,/X,, where X,, X,e N(l,]) are inde-
pendent. In this case the distribution law Y is not Cauchy
distribution. The estimation of parameters of Cauchy with

[
density f(y)=C(6,,6,)=————
yfy) ( 1 2) 7[(912+(y—62)2)
gives the maximum likelihood estimate of scale parameter equals
6, =0.6962 and shift parameter equals 8, =0.7536. Empirical

distribution Fy () received in result of modeling and approxi-

by modeling samples

mated distribution Cauchy are demonstrated in figure 1.

Y F®
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0.60
0.50
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0.10

X
0.00 T T >
-6.00 -4,00 -2.00 0.00 2,00 4,00 6.00

Fig. 1- The distribution of ¥ =X, /X, where X;, X,e N(L1)
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Example 8. It is more general case, when ¥ = X; /X, , where

X,€ N(,01) and X, e N(Up,0p) independent. Table 7
demonstrates the results of goodness-of-fit testing of modeling
samples with selected distribution laws. The distribution Fy ()

tends to normal distribution law under equality of dispersions
and with growth of absolute value W, compared with ;. You
can see that normal distribution law is becoming good model for
random variable Y in case of significant excess of parameter |,

over |y (ul <u2)

TABLE VII
THE GOODNESS-OF-FIT TESTING THE QUANTITY ¥ = X / X,
WITH NORMAL DISTIBUTION

Random variable Tesi?gndlijgibu' x* Pearson C“;;S
N(L1)/N(10,1) N(0.1,0.1) 0 0
N(L1)/N(25.1) N (0.04,0.04) 0.001 0.067
N(110)/N(25.,1) N(0.04,04) 0.228 0.881
N(11)/N(25,4) N (0.04,0.04) 0 0
N(11)/N(37.1) N(0.027.0.027) 0.050 0.196
N(L1)/N(50,1) N (0.02,0.02) 0.617 0.699
Random variable Tesﬁgndllzg‘bu' KOlrrf)‘ggO' Q> AD
N(L1)/N(10,1) N(0.1,0.1) 0 0
N(L1)/N(25,1) N (0.04,0.04) 0.054 0.004
N(1,10)/N(25,1) N(0.04,0.4) 0.876 0.379
N(L1)/N(25.4) N (0.04,0.04) 0 0
N(L1)/N(37.1) N (0.027,0.027) 0.218 0.077
N(L1)/N(50,1) N (0.02,0.02) 0.818 0.683

The empirical distributions has more heavy right tail when
there is slight excess of [, over ;. Y start to deviates from

normal distribution law with increase dispersion of X, . Under

these conditions the distribution Y better approximates by
normal distribution law with increase dispersion of X; towards

dispersion of X, .
The figure 2 represents F'(y) in case of significant excess of

absolute value [, over W, .

tF
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0.20

0.10 X

0.00 >
-30.00 -20.00 -10.00 0.00 10.00 20,00 30,00

Fig. 2 — The empirical distribution of ¥, Xje N(10,1), X € N(L1)
If standard deviation /D[X;] much less than mathematic

expectation E[X;]and distributions X, close to normal law

(such situations don’t rare), then distribution ¥ =X,/X, is

approximated well by normal law. In this case, the function of
linearization () often used in practice does not provide to

large inaccuracies.

IV. THE STUDY OF RANDOM VARIABLES FUNCTION CONVERGENCE

Example 9. There is interrelation between the distribution of
Fisher and distribution y°

dy * F(dy,dy) = %% (dy) under dy — o
where d; and d, are degrees of freedom of distributions. We
study the convergence of this form in example of distribution of
random variable 4* F(4,d,) under sample size equals 1 660
000. The Kolmogorov differences between theoretical distribu-
tion xz (dy) and empirical distribution  d * F(d),d,) are
shown in table 8 and figure 3.

Obviously, that distribution of given quantity actually conver-
gences to distribution »”, and the trend line confirms that. In this
case we can propose that goodness-of-fit hypothesis of
4* F(4,d,) with y*(4) will not deviates under d, >218.

TABLE VIII
THE DIFFERENCES BETWEEN DISTRIBUTION OF RANDOM VARIABLE

4* F(4,d,) AND DISTIBUTION y?(4)

d, difference d, difference

1 0.909795488 20 0.086142562
2 0.735759456 40 0.04559945
3 0.560978724 80 0.022972802
4 0.435409205 120 0.015452631
8 0.223739526 180 0.010450386
10 0.179828623 199 0.009542026

You can see the degree of closing between the theoretical and
the empirical distributions in depend on # in figure 4.

Example 10. The interrelation between beta distribution and
gamma distribution has the next form:

n*B(k,n,1,0) = I"(k,1,0) under n — oo,
where k& and » are shape parameters of distributions. This
convergence is studied in example of distribution of random
variable #n*B(2,n,1,0) under sample size equals 1660000.

Table 9 contains the differences between theoretical and empiri-
cal distributions.

206



2016 13th International Scientific-Technical Conference APEIE — 39281

09

08 7

07 +

0,6

05

04 1

03 +

02

01 ¢

1.00

0.90

0.80 -
0.70 |
0.60 -
0.50 -
0.40 -
0.30 -

y=1.347x 0528
R*=0,9926

* - +

0 20 40 60 80 100 120 140 160 180
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Fig. 4 — The distribution of 4 * F'(4,198)

TABLE IX

n* B(2,n,1,0) AND DISTIBUTION [7(2,1,0)

n difference n difference

1 0,735759456 20 0,036542575
2 0,435409205 36 0,02548311
3 0,296347784 50 0,018458541
4 0,223739526 64 0,014513949
5 0,179828623 75 0,012450055
8 0,112964985 80 0,011699978
10 0,090685139 90 0,010450386
16 0,056916171 99 0,009542026

demonstrate in figure 5.

o

0,15

01 1

0 10 20 30 40 50 60 70 80 90 100

Fig. 5 — The differences between the distributions

In this case the goodness-of-fit hypothesis of 4* F(4,d,)

with *(4) will not deviates under d, > 218 as predicted.

Also this property performed for special case of given
interrelation between gamma-distribution and exponential
distribution. In this case, distributions of random variable
n*(1-U(0,1)"(1/n)), where U(0,1) if uniform on interval
(0,1) random variable, must convergences to exponential
distribution. The results of testing are demonstrated in table 10.
Figure 6 shows distribution of random variable under » =500 .

TABLE X
GOODNESS-OF-FIT TESTING OF THE QUANTITY

n*(1=U(0,1)*(1/n)) WITH EXPONENTIAL DISTRIBUTION

n XZ Pearson Kolmogorov
100 0 0
250 0.000003 0.032
500 0.014 0.524
750 0.095 0.561
1000 0.749 0.552
1250 0.894 0.971

n ®’ CMS Q' AD
100 0 0
250 0.034 0.004
500 0.362 0.171
750 0.649 0.378
1000 0.878 0.942
1250 0.802 0.822
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Fig. 6 — The distribution of n*(1-U(0.1)"(1/n)) under n =500

The results of research are shown advanced features of de-
veloped subsystem under investigation of distribution laws of
uncertainty of measurements and constructions of its model.

V. THE DESCRIPTION OF USER INTERFACE

The program ensuring allowed to simulate the samples of
random variables functions is elaborated for investigating of
distribution laws functions of random variables. The interface
allows setting the arbitrary functions of random variables
distributed by voluntary different one-dimensional distribution
laws. The inlay “Modeling of functions of random variables” is
shown in figure 7.

The description of user interface:

1 — is module of choice of distributions from distribution laws
loaded in system. The normal distribution with one scale and null
shift is chosen in figure 7;

2 — is module of choice of random variables from non-used yet
variables;

3 — is module contained the chosen random variables. The
relations of these variables with distribution ID are given in
module in figure 7 (ID is not shown to users);

4 — are buttons for adding and deleting of random variables in
module 3;

5 — is module contained the information about variables, such
as its distribution including its parameters (copy from module 1)
and the initial value of random-number generator, which you can
change ;

6 — is button for loading of distributions type in ~ module 1;

7 — is button for change of distribution parameters. The click
by this button creates the form demonstrated in figure §;

8 — is module for change of modeling parameters, contained
the number of random variables created in module 2 and size of
modeling samples;

9 — is module for entry of modeling mathematical expression.
The operations accessed in this module will present bellow;

10 — is button for start of modeling function of random varia-
bles. In case of incorrect entry of expression in module 9 will be
shown the error and modeling don’t start;

11 — is module for entry of file name for saving of result sam-
ple. The file name will be generated by default after the ending
of modeling according from entry of modeling expression;

12 — is button for confirmation of saving already simulated
sample in file, which name selected in module 11.

é:u Modeling of functions of random variables

ey ——

The distribution laws

S

33—

-N Rela

Initial value of random-number generator

/!
& R

4~
\\EIE})!T\ X[0] -> 1 100 i‘ X[0] - Normal with scale paramets | Number of random variables rd 8
X X[1] ->1
2 L [1or  [2]X01- | with scal t | [10 Al
X[4 [~ >>> 101 4! X[1] - Normal with scale parame =
X[5] |F i
X[6] lece Samples size
X[7 < o000 3]
E) - < m )
9 \xNModeling expression #Fﬂ__,-ﬁ'”" 1 0
[x[o]+X[1]| To simulate |
11
\“\\File name //--F’ 12

o |

Fig.7 — User interface
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Fig. 8 — The “distribution parameters” form

VI. CONCLUSIONS

The software intended for investigating of distribution laws of
probability of functions of set of independent random variables
had been realized in accordance with the objectives of research.

The developed program allows: to simulate the samples of
pseudorandom variables distributed by different distribution laws
with preset parameters and initial value of random-number
generator; to simulate the samples of values of functions of set of
independent random variables.

The form of independent random variables functions can be
“arbitrary” and it is set by user in dialog mode.

The following operations are accessible in program system:

- binary operations: addition ), subtraction
(-), multiplication (*), division (/), division modulo (%),
involution ();

- unary operations: unary minus, rootsquaring (sqrt), modulo
(abs), trigonometric operations (sin, cos, tg, ctg, arcsin, arccos,
arctg, arcctg, sh, ch, th, cth, exp), logarithmic operations (lg, In);

- n-ary operations: finding the minimum (min), finding the
maximum (max), finding the average (avg) and sum (sum) of
many random variables.

- Also well-known constants € (¢) and 7T (pi) are accessible
in system.

In addition to the simple simulated function, which the entry is
shown in Figure 7, we give examples of more complex entries
for n-ary operations:

- avg(X[i(0)],i(0)=0:10) — average value of 11 elements of X
with indexes 0 to 10 inclusively;

- min(X[i(0)],i(0)=0:49) — minimum among the 50 elements
of X with indexes 0 to 49 inclusively;

- syntax for maximum finding is similar;

- Sum(X[(i(0)],i(0)=0:24)+Sum(X[i(1)],i(1);=50:75) — the
finding the sum of X with indexes 0 to 24 and ot 50 to 75
inclusively.

The application results show that software is effective instru-
ment for investigating the distribution laws of different functions
of random variables set. A wide set of instruments allows to
simulate the distribution laws of quite complex dependencies
interested for applications.

It is shown that methods of statistical modeling together with
software allowing to construct the approximate mathematical

models for obtained empirical distributions (including in the
form of mixture of different parametric laws), represents
effective instrument for investigating the distribution laws of
functions of random variables and investigating the probabilistic
laws.

This work is supported by the Russian Ministry of Education
and Science (project 2.541.2014K).
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