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Abstract – A wide selection of tests for uniformity is consid-

ered. Distributions of test statistics under true null hypothe-

sis are studied and power of tests is estimated by means of 

methods of statistical simulation. A comparative analysis of 

the power of tests is conducted. The conclusions are made on 

preference of one test or another under presence of specific 

competing alternatives. 

 

Index terms – goodness-of-fit tests, uniformity test, uniform 

distribution, power of test, order statistics. 

I. INTRODUCTION 

NUMBER OF AUTHORS propose different 

statistical tests for testing a hypothesis of uni-

formity. The wide variety of tests is caused by 

frequent application of the uniform model in applications. 

This is not least defined by the fact that such a simple 

model makes it possible to solve problems based on 

analytical methods only. 

Testing the uniformity actually represents goodness-of-

fit testing the hypothesis of uniform distribution of the 

observed sample 
1, ..., nx x . Note that if 

1, ..., nx x  belong 

law with probability distribution function  F x ,
 

then 

random variable  i iy F x  is uniformly distributed on 

the interval  0,1 .  

Uniform distribution is often used to describe the meas-

urement error of some instruments or measuring systems. 

Simulation of pseudorandom values according to different 

parametric laws relies on sensors of uniform pseudoran-

dom values. Parametric laws are urgently needed in the 

systems of statistical simulation. All of these factors 

explain the increasing interest in the choice of simple and 

computationally efficient tests for hypotheses about the 

uniform law of analyzed samples.  

In practice, the presence of a number of different tests 

states a complicated problem of the choice, i.e. infor-

mation available in the literature does not definitely allow 

choosing a specific test.  

In this paper, a lot of considered test studied by the 

method of statistical simulations. The number of experi-

ments carried out for statistical modeling is usually 

assumed equal to 1 660 000 in the study of the distribu-

tions of the test statistic. One the one hand, such number 

of experiments allows tracing the qualitative picture of 

test statistic distributions in depend on various factors. In 

the other hand, this number of experiments provides 

acceptable accuracy of the power estimates and unknown 

probabilities. Computer analysis methods provide an 

opportunity to identify the advantages and disadvantages 

of a test, to assess the size of sample when the difference 

between distributions of test statistics under true tested 

hypothesis and the corresponding asymptotic (limiting) 

distributions of statistics is practically negligible. Also, 

these methods provide an opportunity to compare the 

relative powers of the different tests under various 

alternative hypotheses, and to identify the most preferable 

test.  

II. PROBLEM DEFINITION 

Suppose that  0,1Rav  is the uniform distribution on 

the interval [0,1] and 
1, ..., nx x  are given independent 

observations of random variables. The hypothesis tested is 

0H : X   0,1Rav . The hypothesis is composite, if the 

domain of the uniform random variable is determined by 

the sample. 

The order statistics of X  ( (1) (2) ( )... nx x x    are 

elements ( )ix  of variation series of the sample) are used 

in the tests, let us denote these variables by iU . Most 

tests considered can be divided in two groups. Test 

statistics in the first group based on the use of differences 

between close order statistics 

1i i iD U U   , 

where 0 0U  , 1 1nU   , n  is the size of the sample. 

Test statistics in the second group use differences 

between order statistic and mathematical expectation of 

this order statistic (or their modification). 

III. THEORY 

A. Sherman test 

Sherman test [1,6,7] refers to the first group, in which 

the difference between elements of order statistics is used.  

The test statistic is: 
1
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The null hypothesis 
0H  is rejected for large values of 

statistic 
n . Under true null hypothesis and large n , the 

distribution of test statistic 
n  is described by normal 

distribution. The estimate of the mathematical expectation 

and the variance for the distribution of Sherman test 

statistic are obtained from the results of statistical 

modeling and are presented in Table I. 

 

TABLE I 
MATHEMATICAL EXPECTATION AND VARIANCE FOR 

DISTIRIBUTION OF SHERMAN TEST STATISTIC  

n  [ ]nE   [ ]nD   n  [ ]nE   [ ]nD   

4 0.3277 0.0111 14 0.3552 0.0039 

5 0.3349 0.0094 15 0.3561 0.0036 

6 0.3399 0.0081 16 0.3568 0.0034 

7 0.3436 0.0072 17 0.3574 0.0032 

8 0.3464 0.0064 18 0.3580 0.0031 

9 0.3488 0.0058 19 0.3585 0.0029 

10 0.3505 0.0053 20 0.3589 0.0028 

11 0.3520 0.0048 50 0.3643 0.0012 

12 0.3532 0.0045 100 0.3661 0.0006 

13 0.3543 0.0041 200 0.3670 0.0003 

 

For 20n  , one can use normalized statistic 
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,

 which is described by standard normal distribution as 

n  [1,6,7]. These papers also provide another 

modification of the test statistic given by the formula 

 20,0955
1n V V

n
    , 

where 

1
0,3679 1

2

0,2431 0,605
1

n
n

V

nn

 
   

 


 
 

 

.  

The distribution of this modified test statistic faster 

converges to the standard normal distribution than the 

distribution of original test statistic. 

B. Kimball test 

   The Kimball test statistic [8] is similar to the test 

statistic of Sherman. The test statistic is 
21
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The hypothesis tested is rejected for large values of 

statistic A . This test roughly equivalent to Sherman test 

in the terms of power. The distributions of the statistic of 

Kimball test for different sample size n  present in  Fig. 1.  

 

 
Fig. 1. Distributions of Kimball test statistic. 

C. Cheng and Spiring’s test 

Cheng and Spiring’s test statistic for uniformity [9] is 

calculated according to the following relation: 

 
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where the difference 
1nU U  is named as the range of 

sample. 

If the 
0H  is true, the following inequality always 

holds [1,9]: 

 

 

 

 

2 2

2 2

2 1 4 1

1 1
p

n n
W

n n n

 
 

 
 (for even n ); 

 

 

 

 

2

2 3

2 1 4 1

1 1
p

n n n
W

n n

 
 

 
 (for odd n ). 

Cheng and Spiring’s two-sided test shows not high 

power as usually, however, the test shows the highest 

power in the case of the large sample size and alterna-

tives, which are close to the uniform distribution.  

D. Hegazy and Green’s test 

The type of the statistics used in these tests coincides 

with the type of statistics used in the corresponding tests 

for normality [10]: 
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The differences between order statistics

 iU  and math-

ematical expectation [ ]i iE U   are used in statistics.  

Tests can be used for random variables distributed on 

any interval  ,a b , but in this case it is necessary to 

replace iU  by 1

1

i

n

U U

U U




 and n  by 2n in formulas. 

Thus, the test statistic has the form 
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In [10], the modification of statistic is proposed, in the 

modification values 
1

1
i

i

m





  are used instead of 

mathematical expectations 
1

i
i

m



 . This is due to the 

asymmetry of the distribution of order statistics. The 

modification test statistics is: 

*
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The hypothesis tested is not rejected with the signifi-

cance level  , if inequalities  1 1T T  ,  * *

1 1T T   or 

 2 2T T  ,  * *

2 2T T   are respectively performed.  

To find critical values of test, one can used the follow-

ing approximation  

  
c

T
nn

a
b

   , 

the values of coefficient a , b  and  c  for   0,95   and 

  0,99   are shown in Table II.  Critical values calculat-

ed by this formula coincide with critical values obtained 

by our simulation up to 2-3 decimal places. 

 

TABLE II 
VALUES OF COEFFICIENT FOR FINDING CRITICAL VALUES  

Test 
statistics 

Percentiles  

0,95 0,99 

a  b   c  a  b   c  

1T  0,0003 0,5876 -0,0425 -0,0070 0,8373 -0,2500 

*

1T  0,0064 0,5066 0,2364 -0,0090 0,7949 -0,0782 

2T  -

0,0068 
0,0783 0,2419 -0,0148 0,1701 0,2745 

*

2T  0,0214 0,0214 0,8212 0,0047 -0,0607 0,9330 

 

These tests show a good power.  

E. Yang test 

The test is designed to test the uniformity of samples 

distributed in the interval with length l .  

The statistic of Yang test [11] is described by the for-

mula 

1

1

1
min( , )

n

i i

i

M D D
l





  . 

For 1l   
1

1

min( , )
n

i i

i

M D D 



 . Since the value l  is 

not always known, it is accepted to used the statistic in the 

form 
1
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The distribution of this test statistic based on range of 

sample coincides with the distribution of test statistic M  

if n  is replaced by 2n . 

This test is two-sided. The hypothesis 
0H  is rejected for 

both small and large values of the test statistic.  

For 15n   one can use the modification of test statistic 

 
3 3

2 1
2 1 2 1

M n M n
n n

  
 

, 

which is belong to the standard normal distribution [11]. 

It was shown that this test has low power. 

F. Greenwood, Quesenberry and Miller’s test 

The statistic of Greenwood test for uniformity is 

   
1

2

1

1

1
n

i i

i

G n U U






   . 

Critical values of this test statistic equal to critical 

values of corresponding tests for exponentially, if n  is 

replaced by 1n   [1,13].  

The test of Greenwood, Quesenberry and Miller’s test 

[12] with the statistic 

    
1

2

1 1 1

1 1

n n

i i i i i i

i i

Q U U U U U U


  

 

      . 

has a higher power [1]. 

The hypothesis under test is rejected for large values of 

this test statistic. The disadvantage of this test is the 

dependence of the distribution of the statistic on the size 

of samples n , if tested hypothesis 
0H
 
is true.  

G. Frozini test 

The test statistic is: 

1

1 0.5n

n i

i

i
B U

nn 


  , 

where 
iU  are order statistics based on sample 

1, ..., nx x . 

This test refers to second group. The hypothesis under test 
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is rejected for large values of the statistic 
nB . Critical 

values of the test statistic obtained by our simulation are 

presented in Table III. These values do not change for 

50n  , it indicates the presence of the limit distribution. 
 

TABLE III 
CRITICAL VALUES OF FROCINI TEST STATISTIC 

n  
 Percentiles   

0,8 0,85 0,9 0,95 0,99 

3 0.3981 0.4345 0.4836 0.5596 0.6872 

5 0.4027 0.4397 0.4895 0.5675 0.7161 

7 0.4048 0.4423 0.4925 0.5726 0.7261 

8 0.4052 0.4426 0.4931 0.5730 0.7292 

9 0.4060 0.4433 0.4938 0.5737 0.7330 

10 0.4064 0.4439 0.4943 0.5743 0.7326 

12 0.4070 0.4442 0.4951 0.5759 0.7373 

15 0.4075 0.4451 0.4958 0.5768 0.7398 

17 0.4079 0.4453 0.4964 0.5780 0.7407 

20 0.4083 0.4456 0.4966 0.5785 0.7428 

50 0.4095 0.4472 0.4986 0.5808 0.7485 

100 0.4100 0.4477 0.4991 0.5815 0.7506 

200 0.4100 0.4477 0.4990 0.5816 0.7509 

H. Neyman and Barton’s test 

This test is based on likelihood ratio [15]. The test 

statistic is based on values: 

 
1

1
0.5

n

j j i

i

V U
n 

  , 

where  j y  are Legendre polynomials, which are 

orthogonal on the interval  0,1 . Generally, the first 4 

polynomials are used: 

 1 2 3 ;y y       2

2 5 6 0,5 ;y y  
 

   3

3 7 20 3 ;y y y  

   4 2

4 3 70 15 0,375 .y y y     

The test statistic is 

2

1

K

K j

j

N V


 . 

The hypothesis under test is rejected for large values of 

statistics. In our study, test statistics with two, three and 

four polynomials of Legendre were used. Distributions of 

test statistics for 200n   are present in Fig. 2. 

In [16] it is shown, that the distribution of test statistic 

for 20n   is approximated by 
2 

distribution with K  

degrees of freedom.  

 
Fig. 2. Distributions of Neyman and Barton’s test statistics

KN .  

I. Kolmogorov and Smirnov’s type test 

The Kolmogorov and Smirnov’s test with statistics D
, 

D
, D , and Kyper test V  are used for testing the 

uniformity. 

Test statistics of these tests are: 

max ,
1

i
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i
D U
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  
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 
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1
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 max , ,D D D   .V D D    

Distributions of test statistics quickly converge to the 

limiting distributions, if we used statistics in the following 

forms: 
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n n
D

  
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1 0,24
1 0,1555 .

1 1
V V n

n n

  
      
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Distributions of the modification of test statistics for 

200n   are present in Fig. 3. 

 

 
Fig. 3. Distributions of the modified test statistic. 
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IV. EXPERIMENTAL RESULTS 

Some authors give various normalizing transformations 

for test statistics, which make it possible to apply the 

standard normal law to normalized statistic to compute 

percentiles while testing the hypothesis. In practice, such 

asymptotical results may turn to be unacceptable for 

samples of finite volume as a consequence of significant 

difference between distribution of specific statistic and its 

asymptotical model. 

We used the methodology of statistical simulation [16] 

to verify how close actual distributions of statistics fit to 

corresponding theoretical models. We investigated the 

distribution of 3-normalized statistics: two test statistics 

of Sherman and test statistic of Yang. In addition, test 

statistics of Neyman and Barton was checked for agree-

ment with the chi-square distribution. The results are 

based on 16 600 simulations. The sample of test statistics 

obtained by our simulation was checked for agreement 

with their limiting distribution using 5 goodness-of-fit 

tests. Hypotheses of goodness-of-fit are not rejected for 

sample size 20n  . Normalized statistics of Sherman 
n  

agrees with the standard normal law for 10n  . 

V. DISCUSSION OF RESULTS 

We compared the power of tests for relatively sample 

size n=50, 100, 200. Empirical distributions of test 

statistics under either true null hypothesis or competing 

hypotheses were found based on 1 660 000 simulations. 

The hypothesis under test 
0H was chosen a uniform law. 

Alternative hypothesis 
1H  was chosen beta distribution 

with the density  

    10
1 11

0 1( ) , 1f x x x
 

 
    

and the form parameters 
0  and 

1  are close to 1. This 

distribution was chosen because the fact that the standard 

uniform distribution is a special case of the beta distribu-

tion with the parameters of form 
0 =1 and 

1 =1.  

The powers of tests obtained for sample size n=50, 100, 

200 are given in Table IV-VI. Note that D or D  

demonstrate small values of power in some cases. This is 

due to the fact that the distribution functions of alternative 

hypothesis are located above or below the function of 

uniform distribution. (see Fig. 4).  

 
Fig. 4. – Distribution function of hypothesis 

0H  and 
1H  

 

Table IV-VI also show the power in the case of  1,2

and  2,1  alternative hypothesis. These distributions 

are symmetric and far to uniform distribution. Problems 

of D , D  are more noticeable for these alternatives.   

The power of tests obtained for alternative hypothesis, 

which is close to uniform distribution, is given in Table 

VII. Distribution functions of these alternatives crossed 

the function of the uniform distribution (see Fig. 5).  

 
Fig. 5. – Distribution functions of hypotheses 

0H  and 
1H  

Distributions  1.05,1.05  and  1.1,1.1  are close to 

the uniform distribution and therefore tests are not 

recognize the differences.  Powers of test are obtained for 

smaller size of simulations 16 600 and for large sample 

sizes n=200 and n=1000. In this case, good power was 

shown by Cheng and Spiring’s test and Neyman and 

Barton’s test. This experiment was repeated for Cheng 

and Spiring’s test on 1 660 000 simulations to clarify and 

confirm the results. Power of tests obtained on large size 

of simulation and power obtained on 16 600 simulation 

do match up to 3-4 decimal places. 
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VI. CONCLUSION 

Studies have identified the strengths and weaknesses of 

considered tests. Obviously, among the all tests studied, 

we cannot unambiguously choose a test with the highest 

power with respect to every considered competing 

hypothesis. It is as well unrealistic to place the tests in 

some unconditional order, e.g., descending by power. In 

the same time, it is possible to select groups of tests 

useful in case of suggestion of certain kind of alternative. 

Thus, with respect to competing distributions, which far 

from the uniform distribution, Hegazy and Green’s tests 

and Neyman and Barton’ tests show stably high power. 

The test with statistic based on the first two Lagrange 

polynomials is more powerful than other Neyman and 

Barton’s tests. In some cases, the tests with modified 

statistic have the best power than other Hegazy and 

Green’s tests. Tests with statistics 
1T  and *

1T show high 

power in situations when the distribution corresponding to 

the competing hypothesis is located above or below the 

function of the uniform distribution (see Fig. 4). Tests 

with statistics
2T
 
and *

2T  are more powerfull in situations 

when the distribution corresponding to the alternative 

hypothesis crossed the function of the uniform distribu-

tion (see Fig. 5), 

Frosini test has the high power in comparison with 

Hegazy and Green’s test and Neyman and Barton’s test. 

The test with statistic D  and Kyper test are preferable 

among the Kolmogorov and Smirnov’s type tests. Tests 

with statistics D
 and D  can be used only in the case of 

certain kinds of alternatives.  

The test of Sherman, the test of Kimball and the test of 

Greenwood, Quesenberry and Miller show less power 

than tests D  and V . Yang test has low power relative to 

any alternative hypotheses.  

Generally, Cheng and Spiring’s test demonstrate not 

high power. However, this the test of Kyper and Test of 

Neyman and Barton show the best power for alternative 

hypotheses, which close to uniform law, and large sample 

size. 
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TABLE IV 
POWER OF TESTS FOR UNIFORMITY WITH RESPECT TO COMPETING HYPOTHESES (n=50, α=0.05) 

 
 0.9,1   0.95,1   0.99,1   1.05,1   1.1,1   1,2   2,1  

n  0.0607 0.0539 0.0506 0.0483 0.0485 0.2652 0.2656 

A  0.0602 0.0538 0.0506 0.0484 0.0487 0.3530 0.3533 

pW  0.0530 0.0511 0.0502 0.0497 0.0501 0.1112 0.1114 

1T  0.0738 0.0566 0.0506 0.0516 0.0606 0.7698 0.7704 

*

1T  0.0706 0.0553 0.0503 0.0527 0.0628 0.7864 0.7870 

2T  0.0727 0.0563 0.0507 0.0516 0.0601 0.7569 0.7572 

*

2T  0.0694 0.0551 0.0503 0.0526 0.0622 0.7790 0.7795 

M  0.0520 0.0509 0.0502 0.0495 0.0494 0.0879 0.0875 

D  0.0249 0.0358 0.0469 0.0677 0.0892 0 0.7988 

D  0.1041 0.0727 0.0539 0.0339 0.0228 0.7992 0 

D  0.0694 0.0555 0.0505 0.0511 0.0582 0.6802 0.6803 

V  0.0642 0.0552 0.0507 0.0479 0.0482 0.3458 0.3465 

nB  0.0722 0.0559 0.0504 0.0521 0.0616 0.7801 0.7807 

Q  0.0645 0.0555 0.0508 0.0473 0.0470 0.3831 0.3835 

2N  0.0748 0.0579 0.0509 0.0496 0.0547 0.6686 0.6683 

3N  0.0742 0.0577 0.0510 0.0485 0.0516 0.5595 0.5593 

4N  0.0740 0.0579 0.0511 0.0476 0.0495 0.4890 0.4888 

TABLE V 
POWER OF TESTS FOR UNIFORMITY WITH RESPECT TO COMPETING HYPOTHESES (n=100, α=0.05) 

 
 0.9,1   0.95,1   0.99,1   1.05,1   1.1,1   1,2   2,1  

n  0.0622 0.0539 0.0505 0.0493 0.0513 0.5292 0.5291 

A  0.0628 0.0543 0.0505 0.0495 0.0523 0.7288 0.7288 

pW  0.0569 0.0522 0.0502 0.0506 0.0536 0.3586 0.3589 

1T  0.1032 0.0634 0.0508 0.0578 0.0842 0.9943 0.9942 

*

1T  0.0994 0.0620 0.0507 0.0591 0.0867 0.9952 0.9951 

2T  0.1010 0.0629 0.0509 0.0576 0.0827 0.9937 0.9936 

*

2T  0.0972 0.0615 0.0506 0.0588 0.0852 0.9949 0.9948 

M  0.0517 0.0506 0.0501 0.0498 0.0500 0.1156 0.1157 

D  0.0155 0.0289 0.0450 0.0814 0.1246 0 0.9941 

D  0.1466 0.0875 0.0560 0.0275 0.0146 0.9943 0 

D  0.0925 0.0608 0.0507 0.0560 0.0767 0.9833 0.9833 

V  0.0754 0.0577 0.0509 0.0500 0.0564 0.8798 0.8799 

nB  0.1014 0.0628 0.0507 0.0584 0.0855 0.9948 0.9947 

Q  0.0680 0.0560 0.0508 0.0487 0.0518 0.8154 0.8151 

2N  0.0998 0.0632 0.0511 0.0542 0.0728 0.9904 0.9904 

3N  0.0964 0.0625 0.0511 0.0521 0.0655 0.9790 0.9792 

4N  0.0948 0.0627 0.0514 0.0506 0.0609 0.9622 0.9623 
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Table VI 
POWER OF TESTS FOR UNIFORMITY WITH RESPECT TO COMPETING HYPOTHESES (n=200, α=0.05) 

 
 0.9,1   0.95,1   0.99,1   1.05,1   1.1,1   1,2   2,1  

n  0.0680 0.0546 0.0504 0.0514 0.0580 0.9708 0.9709 

A  0.0701 0.0553 0.0504 0.0522 0.0628 0.9992 0.9992 

pW  0.0776 0.0577 0.0506 0.0557 0.0759 0.9708 0.9709 

1T  0.2552 0.0980 0.0523 0.0884 0.2072 1 1 

*

1T  0.2501 0.0964 0.0520 0.0899 0.2112 1 1 

2T  0.2474 0.0959 0.0520 0.0868 0.2006 1 1 

*

2T  0.2416 0.0942 0.0519 0.0883 0.2049 1 1 

M  0.0514 0.0504 0.0501 0.0502 0.0507 0.1574 0.1577 

D  0.0038 0.0155 0.0403 0.1293 0.2678 0 1 

D  0.3191 0.1409 0.0626 0.0149 0.0039 1 0 

D  0.2152 0.0881 0.0517 0.0804 0.1743 1 1 

V  0.1392 0.0704 0.0512 0.0512 0.0608 1 1 

nB  0.2528 0.0973 0.0521 0.0892 0.2093 1 1 

Q  0.0787 0.0578 0.0506 0.0523 0.0655 1 1 

2N  0.2384 0.0917 0.0520 0.0785 0.1758 1 1 

3N  0.2214 0.0872 0.0520 0.0720 0.1504 1 1 

4N  0.2081 0.0843 0.0521 0.0671 0.1328 1 1 

 

TABLE VII 
POWER OF TESTS FOR UNIFORMITY WITH RESPECT TO COMPETING HYPOTHESES (n=200;1000, α=0.05) 

200n    1.05,1.05   1.1,1.1  1000n    1.05,1.05   1.1,1.1  

n  0.049 0.052 n  0.052 0.064 

A  0.049 0.053 A  0.054 0.072 

pW  0,072 0,138 pW  0.191 0.568 

1T  0.047 0.048 1T  0.056 0.103 

*

1T  0.048 0.050 *

1T  0.060 0.115 

2T  0.050 0.054 2T  0.060 0.106 

*

2T  0.050 0.056 *

2T  0.062 0.115 

M  0.050 0.056 M  0.051 0.052 

D  0.050 0.056 D  0.063 0.116 

D  0.050 0.055 D  0.063 0.113 

D  0.057 0.090 D  0.062 0.117 

V  0,050 0,050 V  0.110 0.347 

nB  0.048 0.051 nB  0.057 0.109 

Q  0.048 0.051 Q  0.056 0.084 

2N  0.063 0.116 2N  0.148 0.480 

3N  0.057 0.095 3N  0.123 0.413 

4N  0.052 0.087 4N  0.120 0.415 

 
 


