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While testing composite hypotheses when a scalar or vector parameter of the probability 

distribution is calculated using the same sample, nonparametric Kolmogorov, Cramer-von 

Mises-Smirnov and Anderson-Darling goodness-of-fit tests lose their distribution freedom. 

When testing composite hypotheses conditional distribution of the test statistic depends on 

several factors, even the specific values of the distribution shape parameters. 

An interactive method for investigating distributions of nonparametric goodness-of-fit tests 

statistics, that allows us apply criteria for testing any composite hypotheses using a variety of 

estimation methods, is implemented. 
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1. Introduction 

Classical nonparametric tests were constructed for testing simple hypotheses: 

0H : ( ) ( , )F x F x , where  is known scalar or vector parameter of the distribution 

function ( , )F x . When testing simple hypotheses nonparametric criteria are 

distribution free, i.e. the distribution 
0( )G S H , where S  is the test statistic, does not 

depend on the ( , )F x  when the hypothesis 
0H  is true. 

When testing composite hypotheses of the form 
0H : ( ) { ( , ), }F x F x , 

where the estimate ˆ  of a scalar or vector parameter of the distribution ( , )F x  is 

calculated using the same sample, nonparametric tests lose the distribution freedom. 

Conditional distributions 
0( )G S H  of tests statistics for composite hypotheses depend 

on a number of factors: the type of the distribution ( , )F x , corresponding to the true 

hypothesis 
0H ; the type of the estimated parameter and the number of estimated 

parameters and in some cases the value of the parameter; the method of the parameter 

estimation. 
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2. Nonparametric goodness-of-fit criteria for testing simple hypotheses 

In Kolmogorov test statistic the distance between the empirical and theoretical 

distribution is determined by  

sup ( ) ( , )n n
x

D F x F x , 

where ( )nF x  is the empirical distribution function, n  is the sample size. When n  

statistic distribution nnD  for true hypothesis under test uniformly converges to the 

Kolmogorov distribution [1]  

2 22( ) ( 1) .k k s

k

K S e  

While testing hypothesis using the Kolmogorov test it is advisable to use the 

statistic with Bolshev correction [2] given by [3]:  
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n  is the sample size, 
1 2, , , nx x x  are the sample values in increasing order. When a 

simple hypothesis 
0H  under test is true, the statistic (1) converges to the Kolmogorov 

distribution significantly faster than statistic nnD . 

The statistic of Cramer-von Mises-Smirnov test has the following form [3]: 
2
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and Anderson-Darling test statistic [4, 5] is 

1
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When testing simple hypotheses statistics (2) has the following distribution [3] 
2 2 2
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where 1 1

4 4

( ), ( )I I  - the modified Bessel functions, 
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The statistics (3) has the distribution [3] 
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The Kuiper test [6] is based on the statistic 
n n nV D D . The limit distribution 

of statistics nnV  while testing simple hypothesis is the following distribution 

function [7]: 

2 22 2 2

0

1

1 2(4 1) m s

m

G s H m s e . 

The following modification of statistics converges faster to the limit distribution 

[8]: 

0.24
0.155nV V n

n
, 

or the modification that we have chosen: 

1
( )

3

mod

n n nV n D D
n

.     (4) 

Dependence of the distribution of statistics (4) on the sample size is practically 

negligible when 30n . 

As a model of limit distribution we can use the beta distribution of the third kind 

with the density  
0 1

0
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and the vector of parameters 7.8624, 7.6629, 2.6927, 2.6373, 0.495θ , obtained 

by the simulation of the distribution of the statistic (4). 

Watson test [9, 10] is used in the following form  
2

2

2
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1 1 12, ,
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n n n
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The limit distribution of the statistics (5) while testing simple hypotheses is 

given by [9, 10]: 

2 21 2

0

1

1 2 ( 1)m m s

m

G s H e . 

The good model for the limit distribution of the statistics (5) is the inverse 

Gaussian distribution with the density 
1/2 2
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and the vector of parameters 0.2044, 0.08344, 1.0, 0.0θ , obtained by the 

simulation of the empirical distribution of the statistic (5). This distribution as well as 

the limit one could be used in testing simple hypotheses with Watson test to calculate 

the achieved significance level. 

Zhang tests (Jin Zhang) were proposed in papers [11-13]. The statistics of 

these criteria are: 

1

1 1
1 12 2max log log
2 ( , ) 2 1 ( , )

K
i n

i i

i n i
Z i n i

nF x n F x
,  (6) 

1

log ( , ) log 1 ( , )

1 1

2 2

n
i i

A

i

F x F x
Z

n i i

,    (7) 

2

1

1

( , ) 1
log

1 3
( ) / ( ) 1

2 4

n
i

C

i

F x
Z

n i

.    (8) 

The author gives the percentage points for statistics distributions for the case of 

testing simple hypotheses. The strong dependence of statistics distributions on the 

sample size n  prevents the wide use of the criteria with the statistics (6) - (8). For 

example, Figure 1 shows a dependence of the distribution of the statistics (7) on the 

sample size while testing simple hypotheses. 

Of course, this dependence on the sample size n  remains for the case of testing 
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composite hypotheses. 

 

 

Figure 1. The distribution 0|n AG Z H  of statistics (7) depending on the sample size n  for 

testing simple hypothesis 

 

3. Comparative analysis of the tests power 

In papers [14-16] the power of Kolmogorov ( )K , Cramer-von Mises-Smirnov 

( )KMS , Anderson-Darling ( )AD  tests, and also 2  criteria, was analyzed and 

compared for testing simple and composite hypotheses for a number of different pairs 

of competing distributions. In the case of testing simple hypotheses and using 

asymptotically optimal grouping [17] in 2  criterion, this test has the advantage in 

power compared with nonparametric tests [14, 15]. When testing composite 

hypotheses power of nonparametric tests increases significantly, and they become 

more powerful. 

In order to be able to compare the power of Kuiper ( )nV , Watson 2( )nU  and 

Zhang tests ( , , )A C KZ Z Z  with a power of other goodness-of-fit tests in the paper [18], 

the power of these criteria was calculated for the same pairs of competing 

distributions like in papers [14-16]. 

The first pair is the normal and logistics distribution: for the hypothesis 
0H  - the 

normal distribution with the density: 



Applied Methods of  Statistical Analysis 

13 

 

2

1

2

00

1 ( )
( ) exp

22

x
f x , 

and for competing hypothesis 
1H  - the logistic distribution with the density: 

2

1 1

0 00

( ) ( )
( ) exp 1 exp

3 33

x x
f x  

and parameters 
0 1, 

1 0 . For the simple hypothesis 
0H  parameters of the normal 

distribution have the same values. These two distributions are close and difficult to 

distinguish with goodness-of-fit tests. 

The second pair was the following: 
0H  - Weibull distribution with the density 

0
0

0

1

0 2 2

1 1

( )
( ) exp

x x
f x  

and parameters 
0 2 , 

1 2 , 
2 0 ; 

1H  - gamma distribution with the density 

0

2 1

1

/2

1 0 1

1
( )

( )

xx
f x e  

and parameters 
0 3.12154 , 

1 0.557706 , 
2 0 , when gamma distribution is the 

closest to the Weibull one. 

Comparing the estimates of the power for the Kuiper, Watson and Zhang tests 

[18] with results for Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling 

tests [14-16], the nonparametric tests can be ordered by decrease of power as follows: 

- for testing simple hypotheses with a pair "normal - logistic" - 

CZ  AZ  KZ  2

nU  nV  AD  K  KMS ; 

- for testing simple hypotheses with a pair "Weibull - gamma" - 

CZ  AZ  KZ  2

nU  nV  AD  KMS  K ; 

- for testing composite hypotheses with a pair "normal - logistic" - 

AZ CZ  KZ  AD  KMS  2

nU  nV  K ; 

- for testing composite hypotheses with a pair "Weibull - gamma" - 

AZ  CZ  AD  KZ  KMS  2

nU  nV  K . 

 

4. The distribution of statistics for testing composite hypotheses 

When testing composite hypotheses conditional distribution 
0( )G S H  of the 

statistic depends on several factors: the type of the observed distribution ( , )F x  for 

true hypothesis 
0H ; the type of the estimated parameter and the number of parameters 
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to be estimated, in some cases the parameter values (e.g., for the families of gamma 

and beta distributions), the method of parameter estimation. The differences between 

distributions of the one statistic for testing simple and composite hypotheses are very 

significant, so we could not neglect this fact. For example, Figure 2 shows the 

distribution of Kuiper statistic (4) for testing composite hypotheses for the different 

distributions using maximum likelihood estimates (MLE) of the two parameters. 

 

 
 

Figure 2. The distribution of Kuiper statistics (4) for testing composite hypotheses using 

MLEs of the two parameters 

 

Figure 3 illustrates the dependence of the distribution of the Watson test statistic 

(5) on the type and the number of estimated parameters having as an example the Su-

Johnson distribution with a density: 
2

2

1 3 3
0 12 2

2 2
3 2

1
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22

x x
f x

x
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Figure 3. The distribution of Watson statistics (5) for testing composite hypotheses using 

MLEs of different number of parameters of the Su-Johnson distribution 

 

Figure 4 shows the dependence of the distribution of Anderson-Darling test 

statistics (3) for testing composite hypotheses using MLEs of the 3 parameters of the 

generalized normal distribution depending on the value of the shape parameter 
0
. 

The first work that initiates the study of limiting distributions of nonparametric 

goodness-of-fit statistics for composite hypotheses was the following one [19]. Later 

different approaches were used to solve this problem: the limit distribution was 

investigated by analytical methods [20, 21], [22, 23], [24-26], [27], [28-30], the 

percentage points were calculated using statistical modeling [31], [32, 33], [34], the 

formulas were obtained to give a good approximation for small values of the 

probabilities [35-36]. 

In our studies [37-49], the distribution of nonparametric Kolmogorov, Cramer-

von Mises-Smirnov and Anderson-Darling tests statistics were studied using 

statistical modeling. 

Further, based on obtained empirical distribution of statistics, we construct an 

approximate analytical model of statistics distributions. 
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Figure 4. The distribution of Anderson-Darling statistics (3) for testing composite hypotheses 

using MLEs of  3 parameters of the generalized normal distribution, depending on the value of the 

shape parameter 0  

  

The obtained models of limiting distributions and percentage points for Kuiper 

and Watson test statistics, which are required to test composite hypotheses (using 

MLEs) for the most often used in applications parametric distributions, listed in Table 

1, could be found in the paper [50]. 

Previously obtained similar models (and percentage points) for distributions of 

Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling test statistics (for 

distributions from Table 1) could be found in papers [43, 44, 45, 48,  49]. 

The tables of percentage points and models of test statistics distributions were 

based on simulated samples of the statistics with the size 
610N . Such N  makes the 

difference between the actual distribution 
0( )G S H  and empirical one 

0( )NG S H , that 

does not exceed 10
-3

. The values of the test statistic were calculated using samples of 

pseudorandom values simulated for the observed distribution ( , )F x  with the size 
310n . In such a case the distribution 

0( )nG S H  practically equal to the limit one 

0( )G S H . The given models could be used for statistical analysis if the sample sizes 

25n . 
 

Table 1. Random variable distribution. 

Random variable 

distribution 

Density function 

),(xf  

Random 

variable 

distribution 

Density function 

),(xf  
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3 31
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3 2

1
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22

x x
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Unfortunately, the dependence of the nonparametric goodness-of-fit tests 

statistics distributions for testing composite hypotheses on the values of the shape 

parameter (or parameters) (see Fig. 4) appears to be for many parametric distributions 

implemented in the most interesting applications, particularly in problems of survival 

and reliability. This is true for families of gamma, beta distributions of the 1st, 2nd 

and 3rd kind, generalized normal, generalized Weibull, inverse Gaussian 

distributions, and many others. 

The limit distributions and percentage points for Kolmogorov, Cramer-von 
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Mises-Smirnov and Anderson-Darling tests for testing composite hypotheses with 

the family of gamma distributions were obtained in paper [44], with the inverse 

Gaussian distribution - in papers [46, 47], with families of beta distributions - in paper 

[51], with generalized normal distribution - in paper [52], with the generalized 

Weibull distribution - in paper [53]. It should be noted that the data in these papers 

were obtained only for a limited number, generally for integer values of the shape 

parameter (or parameters). 

 

5. An interactive method to study distributions of statistics 

The dependence of the test statistics distributions on the values of the shape 

parameter or parameters is the most serious difficulty that is faced while applying 

nonparametric goodness-of-fit criteria to test composite hypotheses in different 

applications. 

Since estimates of the parameters are only known during the analysis, so the 

statistic distribution required to test the hypothesis could not be obtained in advance 

(before calculating estimates for the analyzed sample!). For criteria with statistics (6) 

- (8), the problem is harder as statistics distributions depend on the samples sizes. 

Therefore, statistics distributions of applied criteria should be obtained interactively 

during statistical analysis [54], and then should be used to make conclusions about 

composite hypothesis under test. 

The implementation of such an interactive mode requires developed software 

that allows parallelizing the simulation process and taking available computing 

resources. While using parallel computing the time to obtain the required test statistic 

distribution 0( )N nG S H  (with the required accuracy) and use it to calculate the 

achieved significance level *{ }nP S S , where *S  is the value of the statistic 

calculated using an original sample, is not very noticeable compared to a process of 

statistical analysis. 

In the paper [55] an interactive method to research statistics distributions is 

implemented for the following nonparametric goodness-of-fit tests: Kolmogorov, 

Cramer-von Mises-Smirnov, Anderson-Darling, Kuiper, Watson, 3 Zhang tests. 

Moreover, the different methods of parameter estimation could be used there. 

The following example demonstrates the accuracy of calculating the achieved 

significance level depending on sample size N  of simulated interactively empirical 

statistics distributions [55]. 

Example. You should check the composite hypothesis that the following sample with 

the size n =100: 

 

0.945 1.040 0.239 0.382 0.398 0.946 1.248 1.437 0.286 0.987 

2.009 0.319 0.498 0.694 0.340 1.289 0.316 1.839 0.432 0.705 
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0.371 0.668 0.421 1.267 0.466 0.311 0.466 0.967 1.031 0.477 

0.322 1.656 1.745 0.786 0.253 1.260 0.145 3.032 0.329 0.645 

0.374 0.236 2.081 1.198 0.692 0.599 0.811 0.274 1.311 0.534 

1.048 1.411 1.052 1.051 4.682 0.111 1.201 0.375 0.373 3.694 

0.426 0.675 3.150 0.424 1.422 3.058 1.579 0.436 1.167 0.445 

0.463 0.759 1.598 2.270 0.884 0.448 0.858 0.310 0.431 0.919 

0.796 0.415 0.143 0.805 0.827 0.161 8.028 0.149 2.396 2.514 

1.027 0.775 0.240 2.745 0.885 0.672 0.810 0.144 0.125 1.621 

          

has the inverse Gaussian distribution with the density 
1/2 2

3
0 1

20
3

22 33
1

22

1
( ) exp

22

x

f x
xx

. 

The shift parameter 3  is assumed to be known and equal to 0. 

The shape parameters 0 , 1 , and the scale parameter 2  are estimated using a 

sample. The MLEs calculated using the sample above are the following 0
ˆ 0.7481, 

1
ˆ 0.7808 , 2

ˆ 1.3202 . Statistics distributions of nonparametric goodness-of-fit 

tests depend on the values of the shape parameters 0  and 1  [46, 47], does not 

depend on the value of the scale parameter 2  and have to be calculated using values 

0 0.7481, 1 0.7808 . 

The calculated values of the statistics *
iS  for Kuiper, Watson, Zhang, 

Kolmogorov, Cramer-von Mises-Smirnov, Anderson-Darling tests and achieved 

significance levels for these values 
*

0{ }iP S S H  (p-values), obtained with different 

accuracy of simulation (with different sizes N  of simulated samples of statistics) are 

given in Table 2. 

 
Table 2. The achieved significance levels for different sizes N  when testing goodness-of-fit with 

the inverse Gaussian distribution. 

The values of 

tests statistics 
310N  410N  510N  610N  

1.1113mod
nV  0.479 0.492 0.493 0.492 

2 0.05200nU  0.467 0.479 0.483 0.482 

3.3043AZ  0.661 0.681 0.679 0.678 
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4.7975CZ  0.751 0.776 0.777 0.776 

1.4164KZ  0.263 0.278 0.272 0.270 

0.5919K  0.643 0.659 0.662 0.662 

0.05387KMS  0.540 0.557 0.560 0.561 

0.3514AD  0.529 0.549 0.548 0.547 

 

The similar results for testing goodness-of-fit of a given sample with a Г-

distribution with the density: 
1

41 0

3

1

1 4

3 0 3

( )
( )

x

x
f x e  

are given in Table 3. The MLEs of the parameters are 0 2.4933 , 1 0.6065 , 

2 0.1697 , 4 0.10308 . In this case the distribution of the test statistic depends on 

the values of the shape parameters 0  and 1 . 

Fig. 5 presents the empirical distribution and the two theoretical ones (IG-

distribution and Г-distribution), obtained by the sample above while testing composite 

hypotheses. 

 
Table 3. The achieved significance levels for different sizes N  when testing goodness-of-fit with 

the Г-distribution 

The values of 

tests statistics 
310N  410N  510N  610N  

1.14855mod
nV  0.321 0.321 0.323 0.322 

2 0.057777nU  0.271 0.265 0.267 0.269 

3.30999AZ  0.235 0.245 0.240 0.240 

4.26688CZ  0.512 0.557 0.559 0.559 

1.01942KZ  0.336 0.347 0.345 0.344 

0.60265K  0.425 0.423 0.423 0.424 

0.05831KMS  0.278 0.272 0.276 0.277 

0.39234AD  0.234 0.238 0.238 0.237 
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Figure 5. Empirical and theoretical distributions (IG-distribution and Г-distribution), calculated 

using a given sample 

 

6. Conclusion 

The implemented interactive mode to study statistics distributions enables to 

correctly apply goodness-of-fit Kolmogorov, Cramer-von Mises-Smirnov, Anderson-

Darling, Kuiper, Watson, Zhang (with statistics CZ , AZ , KZ ) tests with calculating 

the achieved significance level (p-value) even in those cases when the statistic 

distribution for true hypothesis 0H  is unknown while testing composite hypothesis . 

For Zhang tests this method allows us to test a simple hypothesis for all sample sizes. 

The work was supported by the Russian Ministry of Education as part of the 

state task (project 8.1274.2011) and the Federal Target Program "Research and 

scientific-pedagogical personnel of innovative Russia" (contract number 

14.В37.21.0860). 
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